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ABSTRACT

Within the framework of the novel numerical method, this article presents
an efficient algorithm for solving multidimensional nonlinear heat prob-
lem involving phase change. A numerical study is made for melting of
ice subjected to a constant temperature heat source with different initial
conditions. The algorithmic design is based on two steps: Preliminary
grids are first generated by an algebraic method, that is, a transfinite
interpolation method, with subsequent refinement using a Partial Differen-
tial Equation (PDE) mapping (parabolic grid generation) method in the
next step. Numerical examples are given for the two melting conditions:
low and very low initial temperatures. The accuracy and flexibility of the
presented numerical methods are verified by comparing the results with
existing analytical solutions. The simulated results are also compared with
the experimental results. In summary, the algorithm is able to efficiently
and accurately predict the evolution of temperature distribution and defor-
mation of an interface (melting front) with smooth grid point distribution.
An important application of the present algorithm would be in the field of
phase change problems.
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a thermal diffusivity (m?/s)

C,  specific heat capacity (J/kgK)
L latent heat (J/kg)

t time (s)

7K temperature (°C)

z, z Cartesian coordinates

Greek Symbols

NOMENCLATURE

A effective thermal conductivity

(W/mK)
Subscripts
i initial
[ fusion
!  unfrozen
s frozen

1. INTRODUCTION

Phase change problems (solidification or melting)
are also known as Stefan problems or moving
boundary problems. The solution of moving boundary
problems with phase change has been of special
interest due to the inherent difficulties associated
with the nonlinearity of the interface conditions
and the unknown locations of the arbitrary moving
boundaries. Solidification and melting are important
parts of manufacturing processes such as crystal
growth, casting, welding, surface alloying, dip form-
ing, coating process, latent heat storage, aerodynamic
ablation, casting of metal, food processing, and
production of printed circuit electronics. In all these
processes, phase changes of material are caused by
the heat transfer to and from both of the phases on
either side of the interface. This yields melting if the
net heat is added to the solid part of the interface, and
solidification when the net heat is subtracted.

Owing to their importance, many numerical approx-
imations have been developed to solve these problems
(Landua. 1950; Murray and Landis, 1959; Frivik and
Comini. 1982: Weaver and Viskanta, 1986; Chellaiah
and Viskanta. 1988). This can be classified into two
main categories: front tracking methods and fixed grid
methods. With front tracking methods (Gupta, 2000;
Pardo 2nd Weckman, 1990; Voller et al., 1990; Gong

and Mujumdar, 1998; Rattanadecho, 2004a, 2004b),
the discrete phase change front is tracked continu-
ously and treated as a moving boundary between the
liquid and solid phases. In the mathematical formu-
lation, two different sets of governing equations are
solved in each of the phases. The Stefan boundary
condition is used at the solid-liquid interface to cal-
culate the interface velocity, and the interface is then
moved, depending on this velocity, after each time
step. The latent heat involved in the phase change is
treated explicitly as an internal boundary condition.
The change in size and shape of the computational
domain requires either grid movement techniques or
coordinate system tfansformations. Furthermore, the
front tracking method is applicable for problems with
isothermal phase changes. It is generally not suitable
for problems where the phase change takes place
within a temperature interval and involves the for-
mation of a so-called mushy region. With fixed grid
methods (Fachinotti et al., 1999; Morgan et al., 1978;
Nedjar, 2002; Tamma and Namburu, 1990; Voller
and Cross, 1981; Beckett et al., 2001, 2002; Cao et
al., 1999; Mackenzie and Robertson, 2000; Tenchev
et al., 2005), the phase change front is not tracked
explicitly, but is instead recovered a posteriori from
the computed temperature field. These methods are
also known as single-domain methods because the
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same differential equation can be used for the solid
and liquid regions. These approaches are collectively
known as the enthalpy method because they can be
derived from the energy conservation equation written
in terms of the enthalpy, which is the sum of the
apparent and latent heat. Enthalpy methods are the
natural choice when the phase change occurs over a
temperature interval. In the case of isothermal phase
change, there is a discontinuity in the enthalpy across
the phase change front, which is normally smoothed
by assuming that the phase change occurs over a
temperature interval (Tenchev et al., 2005).

As mentioned above, the conventional numerical
methods, that is, front tracking methods and fixed grid
methods, have been widely used because of easy-to-
handle numerical algorithms. However, in numerical
approximations of these methods with discontinuous
coefficients, often, the largest numerical errors are in-
troduced in a neighborhood of the discontinuities. The
troublesome numerical errors in conventional methods
are effectively reduced if the grid generation and solu-
tion procedures are separate from the discontinuities,
and special formulas are used to incorporate the jump
conditions directly into the numerical model. Com-
pared with the conventional methods, less effort has
been put into computing the phase change problems
with the concept of the separation of grid genera-
tion and the solution procedure, that is, the combined
transfinite interpolation and the PDE mapping method.
A combined transfinite interpolation and PDE map-
ping method leads to the achievement of a very
smooth grid point distribution, and boundary point
discontinuities are smoothed out in the interior do-
main. The idea behind the method is as follows. The
first step is to create a computational grid in body-
fitted coordinates, involving two basic steps: (1) define
an origin point and (2) specify the distribution (num-
ber and spacing) of grid nodes along the edges of
the geometric regions as well as the moving boundary
between the liquid and solid phases. The automatic
grid generator then takes over and, using an algebraic
technique known as transfinite interpolation, creates

a grid that simultaneously matches the edge node
prescription and conforms to the irregular edges of
the body-fitted geometry. Grid generation by algebraic
methods produces high-quality numerical grids and
allow for the very efficient integ‘.rat‘ion of the thermal-
flow field physics. Considering grid optimization. the
designed grid optimization algorithm improves on the
transfinite interpolation method by carrving the grid
generation process one step further. In the final step.
it uses an automatically generated grid as an initial
approximation to a higher-quality grid system de-
rived using the technique of PDE grid generation.
This technique offers advantages over purely alge-
braic methods: (1) good control over the skewness
and spacing of the derived grid on surface interiors,
while simultaneously allowing complete control over
the grid spacing (node distribution) on surface edges
as well as on the moving boundary, and (2) an ability
to produce unique, stable, and smooth grid distribu-
tions free of interior maxima or minima (inflection
points) in body-fitted coordinates. PDE grid genera-
tion works well with irregularly shaped geometries
and can produce grids that are highly conformal with
the edges of individual computational surfaces. The
means for grid generation should not be dictated by
the limitations of a given specific field solution proce-
dure, and conversely, the method that determines the
field should accept as input an arbitrary set of coor-
dinate points that constitutes the grid. Nevertheless,
of course, these two operations can never be totally
independent because the logistic structure of the infor-
mation, the location of outer boundaries, the nature of
the coordinates, and the types of grid singularities are
items that have to be closely coordinated between the
flow solver and the grid generator (Eriksson, 1982).

Grid generation for multidimensional geometries
using transfinite interpolation functions was studied
by Coons (1967), Cook (1974), and Gordon and Hall
(1973). Ettouney and Brown (1983) successfully mod-
eled slightly nonplanar interfaces by using an alge-
braic grid generation system, where the interface was
described in terms of univariate function. Although
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grid generation is the heart of most numerical algo-
rithms for flow problems or non-phase-change prob-
lems, little effort has been reported on phase change
problems, particularly the problem that couples the
grid generation algorithm with the flow solution.

The present article introduces the novel numerical
approach mentioned above, which extends the range
of the initial and boundary conditions in the case
of melting of ice subjected to a constant-temperature
heat source that can be covered. It will also per-
mit a continuous determination of the melting front
movement and indicate the internal temperature dis-
tribution. It offers the highest overall accuracies and
a smooth grid point distribution. Numerically, for
generating a boundary/interface-fitted coordinate sys-
tem, structured grids are initialized using the transfi-
nite interpolation-algebraic method, and the quality of
structured grids can be significantly improved by ap-
plying parabolic-PDE methods. These methods itera-
tively solve the unsteady conduction equation together
with the moving boundary condition, considered to be
conduction as the only mode of heat transfer in both
the unfrozen and frozen layers.

2. MATHEMATICAL FORMULATION
The two-dimensional system illustrated schematically
in Fig. 1 is considered. Initially, the walls are all in-
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sulated, and the rectangular cavity is filled with phase
change material (PCM) in the solid state (ice) having
the fusion temperature of Ts. A constant-temperature
(Tg) heat source is applied at the bottom wall. At
time ¢ = 0, the melting process upwardly begins. The
applicable differential equations for two-dimensional
heat flow with constant thermal properties for the
unfrozen and frozen layers are, respectively,

T,  (8°T,  &°T, ot dz
—a;—“*(-azﬁrzz \&)w @
aT, 9T, &°T, 0T, \ dz
B % (sz +h‘azz)+(§;)az @

where the last terms of Egs. (1) and (2) results from
a coordinate transformation attached to the moving
boundary. In the unfrozen layer, internal natural
convection can be neglected because the melting
process is fast.

Equations (1) and (2) are based on the following
assumptions: (1) the temperature field can be assumed
to be two-dimensional; (2) the thermal equilibrium
exists between PCM and PM; this is possible
when the porous matrix has a little larger thermal
conductivity than the PCM, and the interphase heat
transfer can be properly neglected; and (3) properties
of PM are isotropic.

Insulation

Figure 1. Physical model
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The boundary conditions of Egs. (1) and (2) are (1)
the localized heating condition at the bottom horizon-
~ tal wall (a constant-temperature (T'7) heat source is

partially imposed on the bottom wall),

T LT < Ter: T=Ty 3)

(2) an adiabatic condition (the walls are all insulated),
ar oT
—=—=>0 4
9z Oz )

and (3) a moving boundary condition. The moving
boundary condition (Stefan condition), which is ob-
tained from a consideration of the energy balance at
the interface between the unfrozen and frozen layers,
provides following equation:

BTs aTL azmov .
("sa"‘@) [”( oz )
OZmov

= psLs ot (3)

where Ozmov/0t is the velocity of the fusion front
or melting front and L, is the latent heat of fusion.
To avoid changes in the physical dimensions as the
melting front progresses, ps = p; will be specified. In
this study, A; and A, denote the thermal conductivity
for water and ice, respectively.

3. GRID GENERATION

Generally, two types of structured grid generation
are used: the algebraic method, that is, transfinite or
multivariate interpolation, and the partial differential
equation mapping (PDE mapping) method. Transfinite
interpolation provides a relatively easy way of obtain-
ing an initial grid that can be refined and smoothed by
other methods, whether algebraic, PDE (this work), or
by the variational method. For more complex geome-
tries, such as this work, it is preferable to construct
the grid initially by transfinite interpolation and to
refine the grid filled in Cartesian coordinates in the
interior of a domain by the PDE mapping method.

3.1. Transfinite interpolation

The present method of constructing a two-dimensional
boundary-conforming grid for a phase change slab
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is a direct algebraic approach based on the concept
of transfinite interpolation. In this method. no partial
differential equations are solved to obtain the curvi-
linear coordinates, and the same system is used for
the entire domain. The algebraic method can be eas-
ier to construct than PDE mapping methods and give
easier control over grid characteristics such as orthog-
onality and grid point spacing. However, this method
is sometime criticized for allowing discontinuities on
the boundary to propagate into the interior and for
not generating grids as smooth as those generated by
the PDE mapping method. The main idea behind this
work, prior to generation of grids by PDE mapping
methods, it that it is preferable to obtain first prelim-
inary grids using the algebraic method, that is, the
transfinite interpolation method. The combined trans-
finite interpolation and PDE mapping method is used
to achieve a very smooth grids point distribution, and
boundary point discontinuities are smoothed out in the
interior domain.

For the concept of transfinite interpolation, a signif-
icant extension of the original formulation by Gordon
and Hall (1973) has made it possible to initially
generate a global grid system with geometry speci-
fications only on the outer boundaries of the com-
putational domain and yet obtain a high degree of
local control. Moreover, to successfully track the mov-
ing boundary front, the grid generation mapping must
adapt to large deformations of the interface shape,
while maintaining as much orthogonality and smooth-
ness as possible. Owing to the generality of the
method, it has been possible to use more advanced
mappings than conventional types and thereby im-
prove the overall efficiency of the grid in terms of
computational work for a given resolution.

In Fig. 2, the present method of constructing a two-
dimensional boundary-conforming grid for a phase
change slab is a direct algebraic approach based on
the concept of transfinite or multivariate interpolation.
It is possible to generate initially global single-plane
transformations with geometry specifications only on
the outer boundaries of the computational domain.
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Figure 2. The parametric domain with f(, ., specified on
planes of constant u, w

Let f (u,w) = (z (u,w),z(u,w)) denote a vector-
valued function of two parameters u,w defined on
the region u; < % < Umax, W1 < W < Umax. This
function is not known throughout the region, only on
certain planes (Fig. 2).

The transfinite interpolation procedure then gives
the interpolation function f, ) by the recursive algo-
rithm:

Fiahy = A1) - Fam) + A2 * fumuin)

fewir = Fioray + Bagwr - [ ~ 1]

+ Ba(w) * [f (4, Wmax) ~ ((i‘)wm)] ©)
where Ay}, A2(u), Bi(w) and By, are defined the

set of univariate blending functions, which only have
to satisfy the conditions

.41 = 1 filtum!x) = U
.‘13 1y = O Az(um‘“] == 1
B: ) I Bl(wmax) = 0

B21) =0 Ba(um) =1

Furthermore. the general form in algebraic equations

can be defined as
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U =10
Ay = m:: 3 Agwy =1 — As(w)
wr w
Byw) = r:: T y Baw) =1 — Bi(w) (7

The grid motion defined from a moving boundary
motion is modeled using a Stefan equation (Eq. (11))
with a transfinite mapping method. Furthermore, the
boundary-fitted grid generation mapping discussed in
this section forms the basis for the interface tracking
mapping. However, the mapping must now match the
interface curve on the interior of the physical domain
in addition to fitting the outer physical boundary. In
addition, the system must be adaptive since the grid
lines must change to follow the deforming interface,
while maintaining as much smoothness and orthogo-
nality as possible.

3.2. PDE mapping

In the proposed grid generation mapping, all grids
discussed and displayed have been couched in terms
of finite difference algorithm applications, with the
understanding that whatever nonuniform grid exists
in the physical space, there exists a transformation
that will recast it as a uniform rectangular grid in
the computational space. The finite difference calcu-
lations are then made over this uniform grid in the
computational space, after which the field results are
transferred directly back to the corresponding points
in the physical space. The purpose of generating a
smooth grid that conforms to physical boundaries of
problem is, of course, to solve the partial differential
equations specified in the problem by finite difference
scheme, capable of handling general nonorthogonal
curvilinear coordinates.

Corresponding to Fig. 1, as melting proceeds, a
melting front denoted here as Zmov is formed. Owing
to the existence of this melting front, the frozen and
unfrozen domains are irregular and time-dependent.
To avoid this difficulty, a curvilinear system of coordi-
nates is used to transform the physical domain into a
rectangular region for the computational domain.

It is convenient to introduce a general curvilinear
coordinate system, as follows (Anderson, 1995):

AR gl



Melting of Ice Using Two Methods

=z(& ),z =z(§n) or
£= E-(I!Z)!Tl =T1(5C= Z) (8)

The moving boundaries are immobilized in the di-
mensionless (&,1) coordinate for all times. With the
details omitted, then, the transformation of Egs. (1),
(2), and (5) can be written, respectively, as

oTi _ 5 IR g OT; T,
ot "oz~ Faron Yo

+£(i oR 35‘”!)
72| \%eez )\ n ~ ™3

vallE_ T i Oz Yy &z Zi ]
%082 ~ “Poron T Vom2 \TTE an)

1 T\ dz
+2 (mg-éq) 2 ©
8T, a, [ O°T, . O°T, O°T,
7 (“ o2~ 2Pagan T anz)

ag %z oT, oT,
+ ‘J—a “6—5‘2 (ELE — Zn a—a)

Ean  Yom2 \ o

17 T, dz

v () 43 (=)}
i Gl <o)

3zmov

= psLsT (11)

where J = zg - 2n — Ty - 25, a = 23 + 22, B =
T Tn+2g°2n,Y = T} +23, Te, Tn, z¢ and z denote
partial derivatives, J is the Jacobian, B, «, and 'y are
the geometric factors, and 1, & are the transformed
coordinates. The details of the derivation are briefly
provided in the Appendix, with a few examples.

4. SOLUTION METHOD

The transient heat Eqs. (9) and (10) and the Stefan
condition (Eq. (11)) are solved using the finite differ-
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ence method. A system of nonlinear equations results
whereby each equation for the internal nodes can be
cast into a numerical discretization: Transient Heat
Equation for Unfrozen Layer:

i}
Ik, i)=( : )
ag o k,?, k,‘l:
1+ 75405 ((a{caé)“" (z;a% ))
i a)At ' e
(TI'- (k )+J2(k ) ( (ka ")( Tl (k13+1)

+ TP (ki = 1) ) / (ACTAQ) ) — 2B(k, 4)
" ((Tg‘—l(k +1,i+1) = TPk - 1,4+ 1)

2An
_i’}"'%k%—l,i—l&;’?"“(k—l,ia—l)))ﬁﬁa
T kL )Tk, 0)) | aiAt
ek )( AnAn )) ' J;(k,i)
X (k,i+1)—2X (k,3)+X (k,i—1)
S(CE Acar )
Z(k,i+1)—Z (k,i—1)
)
P (k+1,4) = TP (k—1,4)
( 2An )
Z(k+1,8)— Z (k—1,5)
B ( 2An )
TP~k 4+1) TP (k,i~1) )
*( ! 2M‘ ))-Hx(k,z)
Z (k,i+1) —2Z (ki) + Z (k,i — 1)
g )
([ Z(k+1,i41)—Z(k—1,i+1)
~28(k,i) - )
_(Z(k+ 1,4~ 1%;5(;:— 14 U))/?M
~(Z(k+1,1)—2Z(k,i)+Z (k—1,1)
#(ki) = )
. (_(X(k,i+1)~X(k,z‘—l)))
2AL
TP (k+1,3) — T (k—1,4) f
T e T
X (ki+1)—X(ki-1)
% ( 2AC )
& (Tp (k+1, %%;T’i:}“ (k=1,7) ) *dz(k,’i)) (12)

WEE T T T T
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Transient Heat Equation for Frozen Layer:

T3k, i) = X ' )
z (1+%g;% ((%@E%)Jf(%))

* (T;"(k, i)+—J—§'ETA% *( ok, ) ( To 1 (k,i + 1)

+IPT (ki = 1)) / (ACAQ) ) — 2B(k, 1)
S ((TSH (k+1,341) —ToH (k—1,i+1)

2An
T;“*‘l(k+1,i—l)-T;"“l(k—l,a'~1)
a 2AC )) g
N (TN R+ 1,0+ TPH (k- 1,4)
i ( AnAn ))
a At

e (( (ki) ( X (k, i4+1)—2X(k, i)

X0k i-)faca)s((4

k,i+1)—Z(k,i—1)
2AC

: (T;—l (k+1,4) — T+ (k — 1,@))

. 2An
_(Z(kJrl,i)-Z(k—l,i)
2An )
n—1 : _mn+l &
*(Ts (k,ngg; (k, i 1)))”(&3_)
Z(kii+1)=2Z (ki) + Z (ki —1)
x( ATAL )
_Qﬁ(k,i)((z(k‘*‘l,iJr12);713(k-1=i+1))
Z(k+1,i-1)—Z(k-1,i—1)
_( 2An ))/ZM
o iy (ZR+1,0) =22 (k, i)+ Z(k—1,5)
*(_(X(k,a‘+1)—X(k,i—1)))
AT
(TP (k+1,8) TP (k—1,4) 1
| ( 24n ) WD)
X (ki +1) — X (ki — 1)
X( 2AT )
(TR +1,4)—Tn(k - 1,4) .
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Stefan Condition:

2™ (ki) = 27 (k, i) + =L [(J’ =

psLs (k+1,1)
X(k+1i+1)— X (k+1,i—1)
*( 9AL )
, (—31"3(!:, i) +4Ts(k + 1,7) T (k + 2, i))
2An
N *(X(k—l,ﬁ+1)~X(k—l,i—l))
J(k—1,1) 2AC
*(3?}(!:,3’)—4T;(k—1,z’)+T;(k—2,i)
2An
Z"(k+1,4)— 2™ (k—1,i
oo (ST
*(Z“(k+1,z')—Z“(kh1,z'))
2AC
Z"(kyi+1) — 2™ (ki — 1)
‘( 2A¢ )
Z™(k,i+1) — Z7(k,i — 1)\
*( ( ?‘ZAn( ))) )] R

The details of computational schemes and the strat-
egy for solving the combined transfinite interpola-
tion functions (Egs. (6) and (7)) and PDE mapping
(Egs. (12)—(14)) are illustrated in Fig. 3. Here the
calculation conditions are as follows: (1) the time step
of dt = 0.1 (in seconds) is used for the computation
of temperature field and location of melting front; (2)
number of grid on entire computational domain N =
100 (width) x 100 (depth); and (3) relative errors in
the iteration procedure of 10~8 were chosen.

5. EXPERIMENT

The experiment of the melting of the ice slab (with
inside dimensions of 10 cm in length ()X 5 cm
in height (2)x 25 cm in depth (y)) subjected to
a constant-temperature heat source (Ty = 100°C) is
performed. The partial horizontal bottom wall and top
wall and the vertical front and back walls are made
of acrylic resin. The entire test cell is covered with
8-cm-thick Styrofoam on all sides to minimize the
effect of heat losses and condensation of moisture at
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Figure 3. Strategy for calculation

the walls. The partial bottom wall, which serves as a
constant temperature heat source, is a multipass heat
exchanger. The heat exchanger is connected through
a valve system to a constant-temperature bath, where
the water is used as the heating medium. The distribu-
tions of temperature within the sample are measured
using the thermocouples with diameters of 0.015 cm.
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All thermocouples are set up at 10-mm intervals along
the axis of the sample. These thermocouples are con-
nected to a data-logger and computer, through which
the temperatures can be measured and stored at pre-
selected time intervals. The positions of the meliing
front in the sample are determined by interpolating the
fusion temperature from the thermocouple reading.
The uncertainty in the results might come from
the variations in humidity, room temperature. and
human error. The calculated uncertainty associated
with temperature is less than 2.65%. The calculated
uncertainties in all tests are less than 2.78%.

6. RESULT AND DISCUSSION

6.1. Validation test

To verify the accuracy of the present numerical algo-
rithm, validation was done by performing simulations
for a planar melting font in a phase change slab.
Initially, a temperature of 0°C is set throughout the
slab. Thereafter, the constant-temperature heat source
(Tg = 100°C) is imposed on the bottom wall. The
calculated front location is based on the thermal prop-
erties of ice and water. The results are compared with
the analytical solution appearing in the classic book
by Carslaw and Jaeger (1959), which is also com-
monly referred to in literature, for the melting of a
phase change slab in the same conditions. Figure 4
clearly shows good agreement of the locations of the
melting front. Table 1 again shows good agreement
of the values of the melting front between the present
solution and the analytical solution. This favorable
comparison lends confidence to the accuracy of the
numerical results of the present method.

6.2. A melting front tracking grid generation
system

To illustrate the efficiency of the grid generation
system during the melting of the ice slab (with di-
mensions of 10 cm (z)X 5 cm (z)) subjected to a
constant-temperature heat source, the initial temper-
ature of 0°C is set throughout the slab. Thereafter,
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Table 1
Comparison of the melting front obtained in the present study with the analytical solution ®
Time (s) Present work Analytical solution Difference (%)
120 0.0055 0.0056 1.785
150 0.00618 0.00625 1.12
180 0.0068 0.00686 0.87
@ See Carslaw and Jaeger (1959)
0.007 5
0.006 g f
*
0.005 |-
E i Q
7
@ 0.004 | Q
% i o)
& o
= 0.003 | &
o))
£ o
9 0.002 |
= o
i m  Present Algorithm
0.001 O Analytical Solution
00{)0 N 1 1 1 1 1 | 1 1 1
0 20 40 60 80 100 120 140 160 180

Melting Time [s]

Figure 4, Validation tests for a planar melting font in a phase change slab

the constant-temperature heat source (T'g = 100°C) is
partially imposed on the bottom wall. To carry out the
numerical computations, the computational procedure
is presented in Fig. 3 with the thermal properties ob-
tained from Table 2. To initiate numerical simulation,
a very thin layer of melt (about 0.1% of the total
length of the cavity) with a constant thickness zyoy(0)

obtained from the Stefan solution in the melt and a

ear temperature distribution in the ice region. Tests
revealed that the influence of zpey(o) could be ne-

glected as zyqy(0) was sufficiently small. To check
the influence of the numerical grid on the solutions,
computations were carried out using 100 x 50 and
100 x 100 grids on the entire computational domain,
respectively. The results obtained from this study are
presented in Fig. 5 in the form of an interface defor-
mation (melting front). It is obvious from the figure
that with the present method, the overall interface
deformation qualitatively remains the same for two
different grids; however, the spreading of the melt in
both directions in first case (using 100 x 50 grids)
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Table 2
Thermal properties of the liquid and ice
Property Unfrozen layer (water) Frozen layer (ice)
p(kg/m®) 999.9 917.0
a(m?/s) 0.131 x 10~° 1.2 % 107°
A(W/mK) 0.554 27
L (J/kg) 334.9 x 10°

is higher than in the second case (using 100 x 100
grids). In addition, it is also evident that the solu-
tion had yet to reach a grid-independent state. At this
point, it may be mentioned that the main objective of
the present article is not to demonstrate the features
of the phase change melting problem, but to present
a novel numerical approach to solving phase change

0.05 —

problems on a moving grid. Hence no further study
was carried out to obtain a grid-independent solu-
tion, and all subsequent results are presented for the
100 x 100 grid.

The following results (Figs. 6a—6c) show grids that
fit curves which are the typical shapes seen during
deformation of an interface with respect to elapsed
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Figure 5. Interface deformation in computational domain with different numerical grids: a) 100 x 50 grids and b)

100 x 100 grids
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Figure 6. Grid simulating the deformation of an interface: a) melting time of 30 s, b) melting time of 90 s, and ¢) melting
time of 180 s
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times. Furthermore, the grids show a significant vari-
ation of density and skewness along the interface. It
can be seen that the location of the melting front is
progressed with respect to elapsed times. During the
initial stages of melting, the shape of the interface in
each region becomes flatter as the melting front moves
farther away from the fixed boundary, indicating prin-
cipally one-dimensional heat flow. As time progresses,
the curve on the interface gradually flattens, indicating
the two-dimensional effect.

Figure 7 shows the measured and simulated results
of the melting front during the melting of the ice
slab (with dimensions of 10 cm (z)x 5 cm (2))
subjected to a constant-temperature heat source. In
this comparison, the single constant temperature heat
source Tg = 100°C is applied. The observation of the
melting front depicted by the figure reveals that the
simulated and experimental results are qualitatively
consistent, with the value from the experimental data
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being almost lower than that of the simulated results.
The discrepancy may be attributed to heat loss and
a nonuniform heating effect along the surface of the
supplied load. Numerically, the discrepancy may be
attributed to uncertainties in the thermal and physical
property data. In addition, the source of the discrep-
ancy may be attributed to a natural convection effect
in liquid during the experiment.

The results show that the grid is able to maintain
a significant amount of orthogonality and smoothness
both within the interior and along the boundary as
the grid points redistributed themselves to follow the
interface. These results show the efficiency of the
present method for the moving boundary problem.

6.3. Melting process

The present work is to couple the grid generation
algorithm with the transport equations. The thermal
analysis during the melting process will be discussed
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Figure 7. Comparison of experimental data and simulated melting front from the present numerical study
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in this section. The simulations of temperature distri-
bution within the ice slab in the vertical plane (z — z)
corresponding to a grid simulating the deformation of
an interface (Figs. 6a—6¢c) are shown in Figs. 8a—8c.
Since the present work is to couple the grid generation
algorithm with the transport equations, the thermal
analysis during the melting process will be discussed,
as follows. When a constant-temperature heat source
(Ty = 100°C) is applied during the localized melting
process, heat is conducted from the hotter region in
the unfrozen layer to the cooler region in the frozen
layer. At the initial stages of melting, the melting
fronts seem to be square in shape, indicating prin-
cipally one-dimensional heat flow, as explained for
Figs. 6a-6¢. Later, the melting fronts gradually exhibit
a shape typical for two-dimensional heat conduction—
dominated melting. However, as the melting process
persists, the melting rate progresses slowly. This is
because most of the heat conduction takes place at the
leading edge of the unfrozen layer (melt layer), which
is located further from the frozen layer. Consequently,
a small amount of heat can conduct to the frozen
layer due to the melt layer acting as an insulator and
causing a slowly melting front to move with respect to
elapsed times. Considering the shapes of the melting
front with respect to elapsed times, the melt region of
the ice slab shows signs of melting, while the outer
edge does not display an obvious sign of melting,
indicating that the temperature does not exceed 0°C.
Nevertheless, at the long stages of the melting pro-
cess, the spreading of the melt in both the z- and
z-directions (semicircular shape) is clearly shown.

The following results refer to the case of the
melting of the ice slab with an initial tempera-
ture of —10°C. The constant-temperature heat source
(Ty = 100°C) is partially imposed on the bottom
wall. Figures 9a-9c show grids that fit curves that
are typical of shapes seen during deformation of
an interface with respect to elapsed times. As simi-
larly mentioned in the previous section. the simulated
results show the reasonable trends of melting phenom-
ena at specified melting conditions. Nevertheless, the
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spreading of the melt in this case is lower than that
in previous case (Figs. 8a—8c) due to the difference in
latent heat at the interface during the melting process.

This study shows the capability of the present
method to correctly handle the phase change problem.
With further quantitative validation of the present
method, this method can be used as a tool for a
detailed investigation of this particular melting of the
phase change slab at a fundamental level.

7. CONCLUSIONS

This article focuses on establishing a computationally
efficient approach for solving the moving Boundary
heat transfer problem in two-dimensional structured
grids, with specific application to a undirectional melt-
ing problem. The present work is to couple the grid
generation algorithm with the transport equations. The
thermal analysis during melting of ice subjected to
a constant temperature heat source that partially im-
poses on the bottom wall is discussed. Preiiminary
grids are first generated by an algebraic method, based
on a transfinite interpolation method, with subsequent
refinement using a PDE mapping (parabolic grid gen-
eration) method. A preliminary case study indicates
successful implementation of the numerical procedure.
The algorithm is able to efficiently and accurately
predict the evolution of the temperature distribution
and deformation of an interface (melting front) with a
smooth grid point distribution.

To verify the accuracy of the present numerical
study, the present numerical algorithms were validated
by performing simulations for a plaﬁar melting front
in a phase change slab. It shows good agreement
with the locations of the moving front. The simulated
results from a case study were then compared with
experimental results. The observation of the melting
front verifies that the simulated and experimental re-
sults are qualitatively consistent.

An 1mportant application of the present method
would be in the field of phase change problems. The
next phase. which has already begun, is to couple the
gnid generation algorithm with the complete transport
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equations that determine the moving boundary and
buoyancy-driven convection in the liquid.
APPENDIX

In this section, we will derive a transformation model
of the governing differential equations for use in the
numerical calculations. The details are given subse-
quently. '
A.l. General transformation of the first and second

derivatives
The first derivative of any parameter can be written as

Eoh e B i)
oz J \"'8E o
a 1 0 0
af}'(ﬂ“&'?aa‘—f“ﬂ'a—g) i

Where J is Jacobian, it can be written as

J=Zp -2y —Tq-2 (A2)
where
oz
= — A3
Tg ER (A3)

Considering the second derivative of any parameter,
we will establish the second derivative of the Laplace
equation of parameter A, where Egs. (A1)-(A3) are
related:

82 o 1 824
2 — = e—- - —
e (a 2 522)A NE (“ E2
924 8% A 1
-2:B- e toge || By

o}y on?
&n 2§ nn ZE, 8]'] zﬂaa

+ (- 2g6 — 2B 2en +7Y  20m)

dA 0A
'(In'-é-é—xg'-a?)] (A4)
where
o =2z2+22

B==z¢ zy+ 2 2
‘y'::z:g—l-zg (AS)

Tg, Te, 2g, and 2z denote partial derivatives, B, «,
and y are the geometric factors, and 7, & are the
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transformed coordinates. The related parameter can be
defined as

r=z(&m), z=2(Em) or

E=E(z,2), n=n(z,2) *

e=x(t), z=2z(tn) o

E=E(z), n=n(z,2) (A6)
mn—%—o or E,L—gi' 0

Corresponding to Eq. (A6), the first derivative of any
parameter (Eq. (A1)) can be rewritten as

9 1 8 _a_)
6:1: 7\ 38 ”% By

8 8
( %—zn-ﬁ)or

1
a 4
1 a )
8;{::7 (Z“ Bt & %)
1
8z  J

0
2o (e d)
where |
J =gz — T2
J =y <z (AB)

The second derivative of any parameter (Eqs. (A6)-
(A4)) can also be rewritten as
1 %A 02A %A
VA=— . ( )

“ oz 2P amm T

1
+ﬁ'{(Dﬁ-maz—?-ﬁ-man-FY-mnn)
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[ 2] 48




1 2
a=z; + 2%, B=2Te  Tn + 26 2, Y=TF + 2

a=2z, =25 2, Y=0t+2 (A10)

A.2. The transformation of thermal model

After some mathematical manipulations (Egs. (A7)
and (A9) and Egs. (1), (2), and (5)), a transformation
model of the governing differential equations becomes

BT; ay ( 32’1} asz 321—‘;) 4 ay

-2\ e Poten Vo2 )t T
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Tt - R\aE PtV )T

52$) T, T 8%z 5 0%
X OCB—EZ' ZE?&TT —2118—&)4'&8—&2— Bm

6% ( OT,\] 1/ 6T.\d
BB o

if oT 1 o7,
(g (=) -3 (=5
xd14 l OZmov _ 0Zmov ;

T | e T an
OZmov

= psLsT (A13)
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