Journal of Heat Transfer Journal

Dear Author,

YOUR PAGE PROOF IS AVAILABLE IN PDF FORMAT; please refer to this URL address
http://115.111.50.156/jw/AuthorProofLogin.aspx?pwd=4ccb37d47c3f

Login: your e-mail address
Password: 4ccb37d47c3f

The site contains 1 file. You will need to have Adobe Acrobat Reader software to read these files. This is free software and is available for user downloading at http://www.adobe.com/products/acrobat/readstep.html.

This file contains:

Adobe Acrobat Users - NOTES tool sheet

A copy of your page proofs for your article

Please read the page proofs carefully and:

1) indicate changes or corrections using e-annotation;
2) answer all queries;
3) proofread any tables and equations carefully;
4) check that any special characters have translated correctly.

Special Notes:

Your prompt attention to and return of page proofs will help expedite publication of your work. Thank you for your cooperation.

Return to:

Susan Branting, Journal Production Manager
Susan.Branting@cenveo.com

If you have any questions regarding your article, please contact me. PLEASE ALWAYS INCLUDE YOUR ARTICLE NO. (HT-11-1373) WITH ALL CORRESPONDENCE.

This e-proof is to be used only for the purpose of returning corrections to the publisher.
Sincerely,

Susan Branting, Journal Production Manager
E-mail: Susan.Branting@cenveo.com
Dear Author,

Below are the queries associated with your article; please answer all of these queries before sending the proof back to Cenveo. Production and publication of your paper will continue after you return corrections or respond that there are no additional corrections.

<table>
<thead>
<tr>
<th>Location in article</th>
<th>Query / Remark: click on the Q link to navigate to the appropriate spot in the proof. There, insert your comments as a PDF annotation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQ1</td>
<td>Please check does “the next section” refer to “Sec. 3”?</td>
</tr>
<tr>
<td>AQ2</td>
<td>Please check the inclusion of forename for the author Fujiwara in Ref. 4.</td>
</tr>
<tr>
<td>AQ3</td>
<td>Please provide the volume number and complete page range for Refs. [27,28].</td>
</tr>
<tr>
<td>AQ4</td>
<td>Please provide doi for Refs: 4, 14, 17, 18.</td>
</tr>
</tbody>
</table>

Thank you for your assistance.
Specific Absorption Rate and Temperature Increase in Human Eye Subjected to Electromagnetic Fields at 900 MHz

Teerapot Wessapan
Phadungsak Rattanadecho

Research Center of Microwave Utilization in Engineering (R.C.M.E.),
Department of Mechanical Engineering,
Faculty of Engineering,
Thammasat University,
Rangsit Campus,
Pathumthani 12120, Thailand

e-mail: ratphadu@engr.tu.ac.th

Abstract

Human eye is one of the most sensitive parts of the entire human body when exposed to electromagnetic fields. These electromagnetic fields interact with the human eye and may lead to cause a variety of ocular effects from high intensity radiation. However, the resulting thermo-physiologic response of the human eye to electromagnetic fields is not well understood. In order to gain insight into the phenomena occurring within the human eye with temperature distribution induced by electromagnetic fields, a detailed knowledge of absorbed power distribution as well as temperature distribution is necessary. This study presents a numerical analysis of specific absorption rate (SAR) and heat transfer in the heterogeneous human eye model exposed to electromagnetic fields. In the heterogeneous human eye model, the effect of power density on specific absorption rate and temperature distribution within the human eye is systematically investigated. In particular, the results calculated from a developed heat transfer model, considered natural convection and porous media theory, are compared with the results obtained from a conventional heat transfer model (based on conduction heat transfer). In all cases, the temperatures obtained from the developed heat transfer model have a lower temperature gradient than that of the conventional heat transfer model. The specific absorption rate and the temperature distribution in various parts of the human eye during exposure to electromagnetic fields at 900 MHz, obtained by numerical solution of electromagnetic wave propagation and heat transfer equation, are also presented. The results show that the developed heat transfer model, which is the more accurate way to determine the temperature increase in the human eye due to electromagnetic energy absorption from electromagnetic field exposure. [DOI: 10.1115/1.4006243]

Keywords: electromagnetic fields, temperature distribution, specific absorption rate, human eye, heat transfer

1 Introduction

In the recent years, there is an increasing public concern about the interaction between the human body and electromagnetic fields. It is well known that the human eye is one of the most sensitive parts of the entire human body that can exhibit thermal damage due to electromagnetic fields exposure. Therefore, it is interesting to investigate on the possible ocular effects occurred during exposure to electromagnetic fields. Although the safety standards are regulated in terms of the peak SAR value of tissue, the maximum temperature increase in the human eye caused by electromagnetic energy absorption is an actual influence of the dominant factors, which induce adverse physiological effects. The severity of the physiological effect produced by small temperature increases can cause eyesight to worsen. There have been medical case reports of the formation of cataracts in humans following the accidental exposure to microwave radiation [1]. Actually, a small temperature increase in the eye of 3–5 °C leads to induce cataracts formation [2]. Additionally, it is reported that a temperature above 41 °C is necessary for production of posterior lens opacities [3]. Numerical analysis of human eye exposed to electromagnetic fields has provided useful information on absorption of electromagnetic energy for the human eye under a variety of exposure condition.

In the past, there have been reports on the effects of electromagnetic fields on the human eye [4,5]. Nevertheless, the analysis generally has been conducted based on peak SAR, which follows public safety standards regulation [6,7]. The experimental data on the correlation of SAR levels to the temperature increases in human tissue are still sparse. Most previous studies of human exposed to electromagnetic fields have not been considered the heat transfer causing an incomplete analysis to the results. Therefore, modeling of heat transport in human tissues is needed to cooperate with the modeling of electromagnetic in order to completely explain these interaction characteristics for approaching realistic phenomena.

The topic of temperature increase in human tissue caused by exposure to electromagnetic fields, particularly those radiated to the eye, has been of interest for several years. Recently, the modeling of heat transport in human tissue has been investigated by many researchers [8–20]. Thermal modeling of human tissue is important as a tool to investigate the effect of external heat sources as well as in predicting the abnormalities within the tissue. In the past, most studies of heat transfer analysis in human eye used heat conduction equation [8–14]. Some studies carried out on natural convection in human eye based on heat conduction model [15,16]. Ooi and Ng [16] studied the effect of aqueous humor (AH) hydrodynamics on the heat transfer within the eye based on heat conduction model. Meanwhile, the bioheat equation, introduced by Pennes [17,18]...
based on the heat diffusion equation for a blood perfused tissue, is used for modeling of heat transfer in the human eye as well [19,20]. Recently, porous media models have been utilized to investigate the transport phenomena in biological media instead of simplified bioheat model [21–23]. Shafahi and Vafai [24] proposed the porous media along with natural convection model to analyze the thermal characteristics during exposure to thermal disturbances. The other research groups have been tried to conduct the advanced model using the coupled model of heat and electromagnetic dissipation in the human eye [10–14].

Our research group has tried to numerically investigate the temperature increase in the human tissues subjected to electromagnetic fields in many problems [25–27]. Wessapan et al. [25,26] utilized a 2D finite element method (FEM) to obtain the SAR and temperature increase in human body exposed to leakage electromagnetic wave. Wessapan et al. [27] developed a three-dimensional human head model in order to investigate the SAR and temperature distribution in human head during exposure to mobile phone radiation. Keangin et al. [28,29] carried out on the numerical simulation of liver cancer treated using the complete mathematical model considered the coupled model of electromagnetic wave propagation, heat transfer, and mechanical deformation in biological tissue in the couple way. Most previous studies of the interaction between electromagnetic field and the human eye were mainly focused on SAR and have not been considered heat transfer causing an incomplete analysis to the results. Therefore, modeling of heat transport is needed in order to completely explain the actual process of interaction between electromagnetic field and the human eye within the human tissue. Although porous media and natural convection models of human eye have been used in the previous biomedical studies [15,16,24], most studies of human eye exposed to electromagnetic fields have not been considering the porous media approach, and natural convection approach is sparse or nonexistent.

There are few studies on the temperature and electromagnetic field interaction in realistic physical model of the human organs especially human eye due to the complexity of the problem, even though it is directly related to the thermal injury of tissues. Therefore, in order to provide information on levels of exposure and health effects from electromagnetic field exposure adequately, it is essential to simulate both of electromagnetic field and heat transfer based on porous media theory within an anatomically model particularly human eye.

This study presents the simulation of the SAR distribution and temperature distribution in an anatomically human eye exposed to electromagnetic field based on porous media theory. This is a pioneer work in the application of natural convection and porous media theory to the study of the interaction between electromagnetic field and the human eye. In this study, a two-dimensional human eye model was used to simulate the SAR and temperature distribution in the human eye model. Electromagnetic wave propagation in the human eye was investigated by using Maxwell’s equations. An analysis of heat transfer in the human eye exposed to TM-mode of electromagnetic fields was investigated using a developed heat transfer model (included the conduction and natural convection heat transfer mode) which proposed by Shafahi and Vafai [24]. In the heterogeneous human eye model, the effect of power density on specific absorption rate and temperature distribution within the human eye is systematically investigated. In particular, the results obtained from a developed heat transfer model, considered natural convection and porous media theory, are compared with the results obtained from a conventional heat transfer model (heat conduction model). The specific absorption rate and the temperature distribution in various parts of the human eye during exposure to electromagnetic fields at 900 MHz, which are obtained by numerical solution of electromagnetic wave propagation and heat transfer equation, are presented. The obtained values represent the accurate phenomena to determine the temperature increase in the human eye due to electromagnetic energy absorption from electromagnetic field exposure.
two-dimensional human eye model used in this study. This model comprises seven types of tissue including cornea, anterior chamber, posterior chamber, iris, sclera, lens, and vitreous. These tissues have different dielectric and thermal properties. In the sclera layer, there are two more layers known as the choroid and retina, which are relatively thin compared with the sclera. To simplify the problem, these layers are assumed to be homogeneous. The iris and sclera, which have the same properties, are modeled together as one homogenous region [16]. The dielectric properties and thermal properties of tissues are given in Tables 1 and 2, respectively. Each tissue is assumed to be homogeneous and electrically as well as thermally isotropic.

3.2 Equations for Electromagnetic Wave Propagation Analysis

Mathematical models are developed to predict the electric field and SAR with relation to temperature gradient within the human eye. To simplify the problem, the following assumptions are made:

1. Electromagnetic wave propagation is modeled in two dimensions.
2. The human eye in which electromagnetic waves interact with human eye proceeds in the open region.
3. The free space is truncated by scattering boundary condition.
4. The model assumes that dielectric properties of each tissue are constant.
5. In the human eye, an electromagnetic wave is characterized by transverse magnetic fields (TM-Mode).

The electromagnetic wave propagation in human eye is calculated using Maxwell’s equations which mathematically describe the interdependence of the electromagnetic waves. The general form of Maxwell’s equations is simplified to demonstrate the electromagnetic field penetrated in human eye as the following equation:

\[
\nabla \times \left(\varepsilon_r \frac{j \sigma}{\omega \varepsilon_0} \nabla \times H \right) - \mu_r k_0^2 H = 0 \tag{1}
\]

where \(H \) is the magnetic field (A/m), \(\mu_r \) is the relative magnetic permeability, \(\varepsilon_r \) is the relative dielectric constant, \(\varepsilon_0 \) = 8.8542 \times 10^{-12} \text{ F/m} \) is the permittivity of free space, and \(k_0 \) is the free space wave number (m^{-1}).

3.2.1 Boundary Condition for Wave Propagation Analysis

Electromagnetic energy is emitted by an electromagnetic radiation device and falls on the human eye with a particular power density. Therefore, boundary condition for solving electromagnetic wave propagation, as shown in Fig. 3, is described as follows.

Table 1 Dielectric properties of tissues at 900 MHz [30,31]

<table>
<thead>
<tr>
<th>Tissue</th>
<th>(\varepsilon_r) (S/m)</th>
<th>(\sigma) (S/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cornea (a)</td>
<td>52.0</td>
<td>1.85</td>
</tr>
<tr>
<td>Anterior chamber (b)</td>
<td>73.0</td>
<td>1.97</td>
</tr>
<tr>
<td>Lens (c)</td>
<td>51.3</td>
<td>0.89</td>
</tr>
<tr>
<td>Posterior chamber (d)</td>
<td>73.0</td>
<td>1.97</td>
</tr>
<tr>
<td>Vitreous (e)</td>
<td>74.3</td>
<td>1.97</td>
</tr>
<tr>
<td>Sclera (f)</td>
<td>52.1</td>
<td>1.22</td>
</tr>
<tr>
<td>Iris (f)</td>
<td>52.1</td>
<td>1.22</td>
</tr>
</tbody>
</table>

Table 2 Thermal properties of human eyes [16]

<table>
<thead>
<tr>
<th>Tissue</th>
<th>(\rho) (kg/m(^3))</th>
<th>(k) (W/m(^\circ)C)</th>
<th>(C_p) (J/kg(^\circ)C)</th>
<th>(\mu) (N s/m(^2))</th>
<th>(\beta) (1/K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cornea (a)</td>
<td>1050</td>
<td>0.58</td>
<td>4178</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Anterior chamber (b)</td>
<td>996</td>
<td>0.58</td>
<td>3997</td>
<td>0.00074</td>
<td>0.000337</td>
</tr>
<tr>
<td>Lens (c)</td>
<td>1000</td>
<td>0.4</td>
<td>3000</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Posterior chamber (d)</td>
<td>996</td>
<td>0.58</td>
<td>3997</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Vitreous (e)</td>
<td>1100</td>
<td>0.603</td>
<td>4178</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Sclera (f)</td>
<td>1050</td>
<td>1.0042</td>
<td>3180</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Iris (f)</td>
<td>1050</td>
<td>1.0042</td>
<td>3180</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Fig. 3 Boundary condition for analysis of electromagnetic wave propagation and heat transfer
It is assumed that the uniform wave flux falls on the left side of the human eye. Therefore, at the left boundary of the considered domain, an electromagnetic simulator employs TM wave propagation port with specified power density

\[S = \int (E - E_1) \cdot E_1 \, dE_1 \]

(2)

Boundary conditions along the interfaces between different mediums, for example, between air and tissue or tissue and tissue, are considered as continuity boundary condition

\[n \times (E_1 - E_2) = 0 \]

(3)

The outer sides of the calculated domain, i.e., free space, are considered as scattering boundary condition [25]

\[n \times (\nabla \cdot E_2) - n E_2 = -n (1 - k - n) E_0 \exp(-jk \cdot r) \]

(4)

where \(k \) is the wave number (\(m^{-1} \)), \(\sigma \) is electric conductivity (\(S/m \)), \(n \) is normal vector, \(j = \sqrt{-1} \), and \(E_0 \) is the incident plane wave (\(V/m \)).

3.3 Interaction of Electromagnetic Fields and Human Tissues

Interaction of electromagnetic fields with biological tissues can be defined in terms of SAR. When electromagnetic waves propagate through the human tissues, the energy of electromagnetic waves is absorbed by the tissues. The specific absorption rate is defined as power dissipation rate normalized by material density [25]. The specific absorption rate is given by

\[\text{SAR} = \frac{\sigma |E|^2}{\rho} \]

(5)

where \(E \) is the electric field intensity (\(V/m \)), \(\sigma \) is the electric conductivity (\(S/m \)), and \(\rho \) is the tissue density (\(kg/m^3 \)).

3.4 Equations for Heat Transfer Analysis

To solve the thermal problem, the coupled effects of electromagnetic wave propagation and steady bioheat transfer are investigated. The temperature distribution is corresponded to the SAR. This is because the specific absorption rate within the human eye distributes owing to energy absorption. Thereafter, the absorbed energy is converted to thermal energy, which increases the tissue temperature.

Heat transfer analysis of the human eye is modeled in two dimensions. To simplify the problem, the following assumptions are made:

1. Human tissues are biomaterial with constant thermal properties.
2. There is no phase change of substance within the tissues.
3. Local thermal equilibrium between the blood and tissue.
4. There is no chemical reaction within the tissues.

This study utilized two pertinent thermal models to investigate the heat transfer behavior of the human eye when exposed to the electromagnetic fields.

Model I: The conventional heat transfer model [20].

Model II: The developed heat transfer model [24].

In this model, the motion of fluid is only considered inside the anterior chamber [16]. There is blood flow in the iris/sclera part, which plays a role to adjust eye temperature with the rest of the body [24]. For the rest parts, the metabolic heat generation is neglected based on the fact that these comprise mainly water [16]. The equation governing the flow of heat in cornea, posterior chamber, lens, and vitreous is the same as that given in Eq. (6).

This model accounts for the existence of AH in the anterior chamber. The heat transfer process consists of both conduction and natural convection, which can be written as follows:

Continuity equation:

\[\nabla \cdot \mathbf{u} = 0; \quad i = b \]

(7)

Momentum equation:

\[\rho_i C_i \frac{\partial T_i}{\partial t} - \nabla \cdot (k_i \nabla T_i) = -\rho_i \frac{\partial \mathbf{u}_i}{\partial t} \cdot \nabla T_i + Q_{\text{ext}}; \quad i = b \]

(9)

The sclera/iris is modeled as a porous medium with blood perfusion, which assumes local thermal equilibrium between the blood and tissue. The blood perfusion rate used is 0.004 1/s. A modified Pennes’ bioheat equation [24,32] is used to calculate the temperature distribution within the sclera/iris.

\[(1 - \varepsilon) \rho_i C_i \frac{\partial T_i}{\partial t} = \nabla \cdot ((1 - \varepsilon) k_i \nabla T_i) + \rho_i \frac{\partial \mathbf{u}_i}{\partial t} \cdot \nabla T_i + Q_{\text{ext}}; \quad i = f \]

(10)

where \(T_b \) is the temperature of blood (K), \(\rho_b \) is the density of blood (kg/m^3), \(C_b \) is the specific heat capacity of blood (J/kg K), \(\mathbf{u}_b \) is the blood perfusion rate (1/s), and \(Q_{\text{ext}} \) is the external heat source term (electromagnetic heat source density) (W/m^3).

In the analysis, the porosity (\(\varepsilon \)) used is assumed to be 0.67. The heat conduction between tissue and blood flow is approximated by the blood perfusion term, \(\rho_i C_i \mathbf{u}_i (T_b - T_i) \).

The external heat source term is equal to the resistive heat generated by electromagnetic field (electromagnetic power absorbed), which defined as [25]

\[Q_{\text{ext}} = \frac{1}{2} \sigma_{\text{tissue}} |E|^2 = \frac{\rho}{2} \cdot \text{SAR} \]

(11)

where \(\sigma_{\text{tissue}} \) is the electric conductivity of tissue (\(S/m \)).

3.4.1 Boundary Condition for Heat Transfer Analysis

The heat transfer analysis, which does not include parts of the surrounding space, is considered only in the human eye. As shown in Fig. 3, the cornea surface is considered as the convective, radiative, and evaporative boundary condition for all of the models.

\[-n \cdot (-k \nabla T) = h_{\text{conv}} (T_i - T_{\text{amb}}) + e \sigma (T_i^4 - T_{\text{amb}}^4) + e \quad \text{on} \quad \Gamma_1 \quad i = a \]

(12)
279 where \(C_i \) is the external surface area corresponding to section \(i \),
280 \(e \) is the tear evaporation heat loss (W/m²),
281 \(T_{am} \) is the ambient temperature (K), and
282 \(h_{am} \) is convection coefficient (W/m² K).

283 The temperature of blood which is generally assumed to be the
284 same as the body core temperature causes heat to be transferred
285 into the eye [16]. The surface of the sclera is assumed to be a con-
286 vective boundary condition for all of the models.

3.5 Calculation Procedure. In this study, the finite element
method is used to analyze the transient problems. The computa-
tional scheme is to assemble finite element model and compute a
local heat generation term by performing an electromagnetic cal-
culation using tissue properties. In order to obtain a good approxi-
mation, a fine mesh is specified in the sensitive areas. This study
provides a variable mesh method for solving the problem as
shown in Fig. 4. The system of governing equations as well as ini-
tial and boundary conditions are then solved. All computational
processes are implemented using COMSOL™ MULTIPHYSICS, to dem-
strate the phenomenon that occurs within the human eye
exposed to electromagnetic fields.

The 2D model is discretized using triangular elements and the
Lagrange quadratic is then used to approximate temperature and
SAR variation across each element. Convergence test is carried
out to identify the suitable number of elements required. The con-
vergence curve resulting from the convergence test is shown in
Fig. 5. This convergence test leads to the grid with approximately
10,000 elements. It is reasonable to assume that, at this element
number, the accuracy of the simulation results is independent
from the number of elements.

4 Results and Discussion

In this study, the coupled model of electromagnetic field and
thermal field are solved numerically. For the simulation, the
dielectric properties and thermal properties are directly taken
from Tables 1 and 2, respectively. The exposed radiated power
used in this study refers to ICNIRP standard for safety level at
the maximum SAR value of 2 W/kg (general public exposure) and
10 W/kg (occupational exposure) [6]. For the electromagnetic fre-
quency of 900 MHz, the effect of power density on distributions
of specific absorption rate and temperature profile within the
human eye is systematically investigated using two models,
nameley, the conventional heat transfer model (models I) and the
developed heat transfer model (model II).

4.1 Verification of the Model. In order to verify the accu-
cracy of the present numerical models, the case without electro-
magnetic field of the simulated results from the present study is
validated against the numerical results with the same geometric
model obtained by Shafahi and Vafai [24]. Moreover, the numeri-
cal results are then compared with the experimental results of the
rabbit obtained from Lagendijk [8]. The validation case assumes
that the rabbit body temperature is 38.8°C, the tear evaporation
heat loss is 40 W/m², the ambient temperature is 25°C, and con-
vection coefficient of ambient air is 20 W/m² K. The results of the
selected test case are illustrated in Fig. 6 for temperature distribu-
tion in the eyes. Figure 6 clearly shows a good agreement of the
temperature distribution in the eye between the present solution
and that of Shafahi and Vafai [24] and Lagendijk [8]. In the figure,
the simulated results of the conventional heat transfer model
(models I) and the developed heat transfer model (model II) pro-
vide a good agreement with the simulated results obtained from
Shafahi and Vafai [24]. This favorable comparison lends confi-
dence in the accuracy of the present numerical model.
4.2 Electric Field Distribution. To illustrate the penetrated electric field distribution inside the human eye, the predicted results obtained from our proposed models are required. Figure 7 shows the simulation of electric field pattern inside the human eye exposed to electromagnetic field in TM mode operating at the frequency of 900 MHz propagating along the vertical cross section human eye model where the varying power densities are done. Due to the different dielectric characteristics of the various tissue layers, a different fraction of the supplied electromagnetic energy will become absorbed in each layer in the human eye. Consequently, the reflection and transmission components at each layer contribute to the resonance of standing wave in the human eye. It can be seen that the higher values of electric field in all cases occur in the outer part area of the eye, especially in cornea, and lens. Certainly, the maximum electric field intensity at the higher power density is greater than that of the lower power density. The maximum electric field intensities are 391.680 V/m, 276.959 V/m, 123.907 V/m, and 87.616 V/m at the power densities of 100 mW/cm², 50 mW/cm², 10 mW/cm², and 5 mW/cm², respectively. The three highest electric field intensity values in the human eye at all power densities occur in cornea, lens, and iris, respectively. This is because the lower value of their dielectric properties shown in Table 1 which corresponds to Eq. (1), as well as these tissues located close to the exposed surface, by which it causes the electromagnetic field can penetrate easily into these tissues. The electric field deep inside the human eye is extinguished where the electric field attenuates due to absorbed electromagnetic energy and is then converted to heat. Moreover, the electric field distribution also showed a strong dependence on the dielectric properties of the tissues.

4.3 SAR Distribution. Figure 8 shows the SAR distribution evaluated on the vertical cross section of the human eye exposed...
to the electromagnetic frequency of 900 MHz at various power densities. It is evident from the figure that the results of the SAR values within the human eye (Fig. 8) which are increased corresponding to the electric field intensities (Fig. 7). Besides the electric field intensity, the magnitude of dielectric properties and thermal properties in each tissue will directly affect the amount of SAR within the human eye. For all power densities, the highest SAR values are obtained only in the region of the cornea but not in lens and iris as electric field distributions. This is because the cornea has a much higher value of its dielectric properties (\(\sigma \)) than those of the lens and iris, as well as the cornea located close to the exposed surface, at which the electric field intensity is strongest. It is found that the SAR distribution pattern in the human eye, which corresponds to Eq. (5), is strongly dependent on the effect of the dielectric properties (\(\sigma \), shown in Table 1) and thermal properties (\(\rho \), shown in Table 2). With penetration into the eye, the SAR values decrease rapidly along the distance from the electromagnetic source. The maximum SAR values are 135.15 W/kg, 67.575 W/kg, 13.525 W/kg, and 6.763 W/kg at the power densities of 100 mW/cm², 50 mW/cm², 10 mW/cm², and 5 mW/cm², respectively. Comparing to ICNIRP standard for safety level at the maximum SAR value of 2 W/kg (general public exposure) and 10 W/kg (occupational exposure) [6], the resulting SAR values from this study are higher than the ICNIRP exposure limits for occupational exposure in most cases except for the power density of 5 mW/cm².

4.4 Temperature Distribution. Since this study has focused on the volumetric heating effect into the multilayered eye induced by electromagnetic field, the effect of ambient temperature variation have been neglected in order to gain insight into the interaction between electromagnetic field and human tissues as well as the correlation between SAR and heat transfer mechanism. For this reason, the ambient temperature has been set to human body temperature of 37°C, and the tear evaporation has been neglected. Moreover, the effect of thermoregulation mechanisms has also been neglected due to the small temperature increase occurred during exposure process. The convective coefficient due to blood flow inside the sclera is set to 65 W/m² K [16]. In order to study heat transfer within the human eye, the coupled effects of electromagnetic wave propagation and unsteady heat transfer as well as initial and boundary conditions are then investigated. Due to these coupled effects, the electric field distribution in Fig. 7 and the SAR distribution in Fig. 8 are then converted into heat by absorption of the tissues. Figure 9 shows the temperature distribution in the vertical cross section human eye at various time exposed to the electromagnetic frequency of 900 MHz at the power density of 100 mW/cm² calculated using (a) the conventional heat transfer model (b) the developed heat transfer model.

Fig. 9 The temperature distribution in human eye at various time exposed to the electromagnetic frequency of 900 MHz at the power density of 100 mW/cm² calculated using (a) the conventional heat transfer model (b) the developed heat transfer model.
within the anterior chamber, shown in Fig. 12, play important roles on the cooling processes in the human eye, especially inner corneal surface, when a large temperature gradient is produced by electromagnetic fields after 10 min. The circulation pattern implies that the generated heat in the anterior chamber is convected in two directions; one is to the corneal surface, and the other to the lens surface. The circulation pattern in this study is quite different from that of the previous studies [16,24] because of the different heating pattern within the human eye. The difference is that in this study, volumetric heat source by electromagnetic fields is adopted, but in the previous studies, surface heating was imposed on the human eye.

The effect of power density (the power irradiated on the human eye surface) has also investigated. Figure 13 shows the comparison of the temperature distribution within the human eye at time approaching to steady state condition with the frequency of 900 MHz corresponding to the power densities of 5 mW/cm², 10 mW/cm², 50 mW/cm², and 100 mW/cm². It is found that the power densities significantly influence the temperature increase within the human eye. Greater power density provides greater heat generation inside the human eye, thereby increasing the rate of temperature rise. By using the conventional heat transfer model, the maximum temperature increases are 0.177°C, 0.353°C, 1.764°C, and 3.526°C at the power densities of 5 mW/cm², 10 mW/cm², 50 mW/cm², and 100 mW/cm², respectively. By using the developed heat transfer model, the maximum temperature increases are 0.153°C, 0.305°C, 1.527°C, and 3.052°C at the power densities of 5 mW/cm², 10 mW/cm², 50 mW/cm², and 100 mW/cm², respectively. In all cases, the maximum temperature increases obtained from the developed heat transfer model have a lower temperature than that of the conventional heat transfer model. This is due to the presence of blood perfusion which provides buffer characteristic to the human eye temperature, as well as the natural convection within the anterior chamber, shown in Fig. 14, play important roles on the cooling processes in the human eye. Figure 14 shows the circulatory patterns within the anterior chamber in human eye exposed to the electromagnetic frequency of 900 MHz at various power densities. These circulatory patterns within the anterior chamber vary corresponding to the power densities which produced the temperature gradient within the human eye. Therefore, in the case of a lower power density, the circulatory patterns have a lower speed, where a circulatory pattern with a higher power density flows faster. At the lower power density with low flow speed, the heat transfer in the anterior chamber occurs mainly by conduction across the fluid layer. In the case of the higher power density with higher flow speed, different flow regimes are encountered, with a progressively increasing heat transfer. The fluid motion within the anterior chamber is driven by the power density which is associated with the Grashof number Gr. The Grashof number is defined as $Gr = \frac{g \beta q D^3 \nu^2}{v^2}$, where D is the eye diameter (m), q is internal power density (W/cm^2), and ν is kinematic viscosity (m^2/s). The range of Grashof numbers investigated is from 5.04×10^3 to 1.01×10^5 as shown in Fig. 14.

Figure 15 shows the steady state temperature increase versus papillary axis (along the extrusion line shown in Fig. 10) of human eye exposed to the electromagnetic frequency of 900 MHz at various power densities. This figure shows that the effects of natural convection and blood perfusion in the developed heat transfer model (model II) have a substantial impact on the
calculated temperature increases in all power densities. In case of low power density, the temperature increase distribution obtained from both heat transfer models are nearly the same, which corresponds to a low temperature gradient. However, in case of higher power density, the temperature increase distribution obtained from both heat transfer models is significantly different. This is because a large temperature gradient produced by an electromagnetic field causes a strong effect of natural convection as well as the presence of blood perfusion which provides buffer characteristic to the human eye temperature.

In this study, the maximum temperature increases occur in the anterior chamber with the power density of 100 mW/cm² calculated using the conventional heat transfer model and the developed heat transfer model are 3.52°C and 3.05°C, respectively. The obtained temperature increases may lead to the formation of cataract or posterior capsular opacification [2].

5 Conclusions

This study presents the numerical simulation of SAR and temperature distribution in the human eye exposed to TM-mode of electromagnetic fields at 900 MHz with the power densities of 5 mW/cm², 10 mW/cm², 50 mW/cm², and 100 mW/cm². The numerical simulations in this study show several important features of the energy absorption in the human eye. Refer to SAR values, the exposed radiated power used in this study refers to ICNIRP.
standard for safety level at the maximum SAR value of 2 W/kg (general public exposure) and 10 W/kg (occupational exposure) [6]. The resulting SAR from this study is exceeded the limit value for occupational exposure in most cases except for the power density of 5 mW/cm². This is because the SAR values vary corresponding to the power densities which produced the temperature increase within the human eye. Therefore, in the case of a lower power density of 5 mW/cm², the SAR value does not exceed the specified SAR limits.

In particular, the temperature results obtained from a developed heat transfer model, considered natural convection and porous media theory, are compared with the results obtained from a conventional heat transfer model in order to highlight the advantages and the weakness of each model. It is found that by using the different heat transfer models, the distribution patterns of temperature at a particular time are quite different. In all cases, the temperatures obtained from the developed heat transfer model have a lower temperature than that of the conventional heat transfer model. This is due to the presence of blood perfusion, which provides buffer characteristic to the human eye temperature, as well as the natural convection within the anterior chamber. It is found that greater power density results in a greater heat generation inside the human eye, thereby increasing the rate of temperature increase. Moreover, it is found that the temperature distributions in human eye induced by electromagnetic fields are not directly related to the SAR distribution due to the effect of dielectric properties, thermal properties, blood perfusion, and penetration depth of the electromagnetic power.

Therefore, health effect assessment of electromagnetic field exposure requires the utilization of the most accurate numerical simulation of the thermal model along with the SAR model. In the future works, the effect of ambient temperature variation will be included in the analysis to represent the actual heat transfer process which occurs in the realistic situation and will focus on the frequency-dependent dielectric properties of human tissue. A study will also be developed to a more realistic 3D model for simulations and to study the temperature dependency of dielectric property. This will allow a better understanding of the realistic situation of the interaction between electromagnetic fields and the human tissues.

Acknowledgment

This work was supported by the National Research University Project of Thailand, Office of Higher Education Commission and the Thailand Research Fund (TRF).

References

