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Moving Boundary-Moving Mesh
Analysis of Freezing Process in
Water-Saturated Porous Media
Using a Combined Transfinite
Interpolation and PDE Mapping
Methods

This paper couples the grid generation algorithm with the heat transport equations and
applies them to simulate. the thermal behavior of freezing process in water-saturated
porous media. Focus is placed on establishing a computationally efficient approach for
solving moving boundary heat transfer problem, in two-dimensional structured grids,
with specific application to an undirectional solidification problem. Preliminary grids are
first generated by an algebraic method, based on a transfinite interpolation method, with
subsequent refinement using a partial differential equation (PDE) mapping (parabolic
grid generation) method. A preliminary case study indicates successful implementation of
the numerical procedure. A two-dimensional solidification model is then validared
against available analytical solution and experimental results and subsequently used as a
tool for efficient computational prototyping. The results of the problem are in good

agreement with available analytical solution and experimental results.
[DOL 10.1115/1.2780177]
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Introduction

Transient heat transfer problems involving solidification or
melting processes generally refer to as “moving boundary” or
“phase change.” Solidification and melting are important parts of
manufacturing processes such as crystal growth, casting, welding,
coating process, thermal energy storage, aerodynamic ablation,
pipeline transport in permafrost regions, and cryosurgery and in
the transportation of coal in coal weather, thermal energy storage,
ice accretion on vehicles and static structures, solidification of
alloys, food processing, freeze drying, chemical processes, and
cryopreservation of engineering tissues. In all these processes,
phase changes of material are caused by the heat transfer to and
from both of the phases on either side of the interface. This yields
melting if the net heat is added to the solid part of the interface
and solidification when the net heat is subtracted.

Up to the present time, the related problems of solidification
process in 1D have been investigated both experimentally and
numerically by many researchers and up to date reviews are avail-
able; Landua [1], Murray and Landis [2], Frivik and Comini [3],
Sparrow and Broadbent [4], Voller and Cross [S], Weaver and
Viskanta [6], Chellaiah and Viskanta [7], Hasan et al. [8], Charn-
Jung and Kaviany [9], Rattanadecho [10,11], Pak and Plumb [12],
Hao and Tao [13], Attinger and Poulikakos [14], Jiang et al. [15],
Hao and Tao [16], Elgafy et al. [17], and Ayasoufi et al. [18].
Regarding specific analysis to moving boundary problems, in a
2D or 3D, there have been significant research studies executed in
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the recent past including Lynch [19], Cao et al. [20], Chatterjee
and Prasad [21], Duda et al. [22], Saitoh [23], Gong and Mujum-
dar [24], and Beckett et al. [25].

When solving a moving boundary problem, complication arises
because the interface between the solid and liquid phases is mov-
ing as the latent heat is absorbed or released at the interface. As
such, the position of the interface is not known a priori and the
domains over which the energy equations are solved varv. Also,
physical quantities such as enthalpy and transport properties vary
discontinuously across these interfaces. Therefore. solutions to
moving boundary problems, especially for multidimensional do-
mains, should cope with difficulties associated with the nonlinear-
ity in the interfacial conditions and unknown positions of arbitrary
interfaces. Moreover, in numerical approximations of this problem
with discontinuous coefficients, often the largest numerical errors
are introduced in a neighborhood of the discontinuities. These
errors are often greatly reduced if the grid generation and solution
procedure are separated with the discontinuities and special for-
mulas are used to incorporate the jump conditions directly into the
numerical model.

It is well known that the construction itself of a coordinate grid
in a specified domain is not a trivial matter and the numerical
solution of the governing partial differential equations upon it is
indeed a formidable computational task, which in turn puts a high
premium on grid generator that can provide an optimum reso-
lution with an economy of nodal points. It is found that these two
items, grid generation and solution procedure, are separate and
distinct operations, and as such should be treated in an indepen-
dent and modular way. The means for grid generation should not
be dictated by the limitations of a given specific flow solution
procedure and conversely the method that determines the flow
should accept as input an arbitrary set of coordinate points. which
constitutes the grid. In general, of course, these two operations
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Fig. 1 Physical model

can never be totally independent because the logistic structure of
the information, the location of outer boundaries, the nature of
coordinate, and the types of grid singularities are items that have
to be closely coordinated between the flow solver and the grid
generator (Eriksson [26]). Grid generation for multidimensional
geometries using transfinite interpolation functions was studied by
Coons [27], Cook [28], and Gordon and Hall [29]. Ettouney and
Brown [30] successfully modeled slightly nonplanar interfaces by
using an algebraic grid generation system where the interface was
described in terms of univariate function.

Although grid generation is the heart of most numerical algo-
rithms for flow problems or nonphase change problem, little effort
has been reported on phase change problems, particularly the
problem that is to couple the grid generation algorithm with the
heat transport equations,

This paper deals with thermodynamically consistent numerical
predictions of freezing process of water in a rectangular cavity
filled with 2 porous medium subjected to a constant temperature
heat sink using moving grids. They will also permit a continuous
determinzuon of the undirectional freezing front move and indi-
cate the intemnal remperature distribution with a greater degree of
boundary complexity and offer the highest overall accuracies and
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Analysis of Heat Transport and Freezing Front

al system illustrated schematically in Fig. 1
. the walls are all insulated and the rectan-
=3 with a porous medium (PM) consisting of the
a3z change material (PCM) in the liquid state
2 fusion temperature T, At time, 1>0, a strip of
Tace. T, less than the fusion temperature is imposed
o wzll. Freezing is initiated at this partial wall and
52 Teezing inierizce moves from top to bottom,

#5en the porous matrix has a little larger ther-
vity than the PCM, and the interphase heat
23 e properly neglected.

"
' j
I [}
(]
iy
o
”
4
=]
w
o
o
g
o
=.
2]

change due to solidification is negligible.
¢ the natural convection in liquid is negligible.
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Table 1 Thermal properties of the unfrozen layer and frozen
layer

Properties Unfrozen layer Frozen layer
p (kg/m?) 1942.0 1910.0

a (m%/s) 0.210x 1076 0.605% 106
A (W/mK) 0.855 1.480
¢, (kg K) 2.099 % 107 1.281 x 10°

Basic Equations. The applicable differential equation for two-
dimensional heat flow with averaged thermal properties in both
the unfrozen and frozen layers, are, respectively,

i _ (&1, ﬂ)
at _a,( a2 a7 ()
o, _ (8T, 5’2_7_)
at _a‘( a2 T a2 @

After some mathematical manipulations, a transformation model
of the original governing differential equations becomes [2]

T (20,51), (m)e

at "a"( 2 ) \&lx | 3)
()
a P\ a2t dz / dt

where the last terms of Eqs. (3) and (4) result from a coordinate
transformation attached to the moving boundary. In the unfrozen
layer, if internal natural convection can be neglected because the
presence of glass beads minimizes the effect of natural convection
current.

Treatment of the Moving Boundary. A consideration of the
energy balance at the interface between the unfrozen layer and
frozen layer provides the following equation (moving boundary or
Stefan condition):

aTs 5Ti') ( t;zrm:w)zjl azmov
—_rx—l1 oL = —ov
(?\; % A % [ i psLs % (5)

where dzy,,/ 0t is the velocity of fusion front or freezing front,
and L; the latent heat of fusion. To avoid changes in the physical
dimensions as the freezing front progresses, ps=p; will be speci-
fied. In this study, the thermal conductivity, \; and \, are bulk-
average values for the glass beads and the water or ice, respec-
tively (refer to Table 1).

Boundary Conditions. Subject to appropriate initial condition
and the boundary conditions are as follows:

(a)  The localized freezing condition. The constant tempera-
ture heat sink is imposed on the partial top wall:

T=T, (6)

(b)  Adiabatic condition. The walls except the position of lo-
calized heating condition are all insulated:

= =20 7

Grid Generation by Transfinite Interpolation and PDE
Mapping

Generally, two types of structured grid generation are in use:
algebraic method, i.e., transfinite interpolation and PDE methods.
Transfinite interpolation method provides a relatively easy way of
obtaining an initial grid that can be refined and smoothed by other
techniques, whether algebraic, PDE method. For more complex
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Fig.2 The parametric domain with £, specified on planes of
constant u, w

geometries, such as this work, it is preferable to construct grid
initially by transfinite interpolation and to refine the grid filled in
Cartesian coordinates in the interior of a domain by parabolic-
PDE method subsequently.

Transfinite Interpolation. The present method of constructing
a two-dimensional boundary-conforming grid for a freezing
sample is a direct algebraic approach based on the concept of
transfinite interpolation. In this method, no partial differential
equations are solved to obtain the curvilinear coordinates, and the
same system is used for the entire domain. The algebraic method
can be easier to construct than PDE mapping methods and give
easier control over grid characteristics, such as orthogonality and
grid point spacing. However, this method is sometime criticized
for allowing discontinuities on the boundary to propagate into the
interior and for not generating grids as smooth as those generated
by the PDE mapping method. The main idea behind this work,
prior to generation of grids by PDE mapping methods, it is pref-
erable to obtain first preliminary grids using the algebraic method,
Le., transfinite interpolation method. The combined transfinite in-
terpolation and PDE mapping methods are used to achieve a very
smoother grid point distribution and boundary point discontinui-
ties are smoothed out in the interior domain.

For the concept of transfinite interpolation method, a significant
extension of the original formulation by Gordon and Hall [29]
have made it possible to initially generate global grid system with
geometry specifications only on the outer boundaries of the com-
putation domain and yet obtain a high degree of local control.
Moreover, to successfully track the moving boundary front, the
grid generation mapping must adapt to large deformations of the
interface shape while maintaining as much orthogonality and
smoothness as possible. Due to the generality of the method, it has
been possible to use more advanced mappings than conventional
types and thereby improve the overall efficiency of the grid in
terms of computational work for a given resolution.

In Fig. 2, the present method of constructing a two-dimensional
boundary-conforming grid for a sample is a direct algebraic ap-
proach based on the concept of transfinite or multivariate interpo-
lation. It is possible to initially generate global single plane trans-
formations with geometry specifications only on outer boundaries
of the computational domain.

Let f(u,w)=[x(u,w),z(u,w)] denote a vector-valued function

of two parameters u, w defined on the TEZION 1) S US Uy, Wy .

SWSunpg This function is not known throughout the region,
only on certain planes (Fig. 2).

The transfinite interpolation procedure then gives the interpola-
tion function fi, ) by the recursive algorithm:
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where A1()»A2(4),B1(w)» and By(w) defined the set of univariare
blending functions, which only have to satisfy the following con-
ditions:

Ayp=1 Ay,_,=0
Ayy=0 Azmm|= 1
BI(!]= l BI"WM}:O

Byy=0 By =1

Further, the general form in algebraic equations can be defined as

" -Uu

A= u_—m—_ ] Aaw=1-4Ayy
max

31(wJ:_“—‘ww_1 Baw) = 1= By (9)
max

The grid motion defined from a moving boundary motion is
modeled using a Stefan equation (Eq. (13)) with a transfinite map-
ping method.

PDE Mapping. In the proposed grid generation mapping, all
grids discussed and displayed have been couched in terms of finite
difference algorithm applications, with the understanding that
whatever nonuniform grid exists in the physical space, there exists
a transformation which will recast it as a uniform rectangular grid
in the computational space. The implicit-finite difference calcula-
tions are then made over this uniform grid in the computational
space, after which the field results are transferred directly back to
the corresponding points in the physical space. The purpose of
generating a smooth grid that conforms to physical boundaries of
problem is, of course, to solve the partial differential equations
specified in the problem by finite difference scheme, capable of
handling general nonorthogonal curvilinear coordinates.

Corresponding to Fig. 1, as freezing proceeds, a freezing front
denoted here z,,, is formed. Due to the existence of this freezing
front, the frozen (ice) and unfrozen (water) domains are irregular
and time dependent. To avoid this difficulty, a curvilinear system
of coordinates is used to transform the physical domain into rect-
angular region for the computational domain.

It is convenient to introduce a general curvilinear coordinate
system as follows (Anderson [31]):

x=x(§7) z=z(§poré=£xz) =7z  (10)

The moving boundaries are immobilized in the dimensionless
(¢,7) coordinate for all times. With the details omitied. then the
transformation of Eqgs. (3) and (S) can be written, respectively, as:

?ﬂ_ﬁ'ﬂ( &1, 2,,32Tf+ BZTI) E{[( &)(ET_
o~ P\" 98 Potan” Vo )T P\ %38 )\ %5,
@) Lz, 1 ‘922( @)
") R Pagan ™t Yo\ M5y

1( ar,)dz
= x§_ =
J\ *an/dt
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where J=xgz,~x,z2 a—x2+z B= =Xty 'y—)c§+:f:‘f and
X, X,2s and z,, denote parr.lal derivatives, J is the Jacobian,

1

{[a(k D)/ALAL] + [(k,i)/ AnpAn]}

I:H-l(k,f) -

Jz(k i)

. f
(T“(k”“ﬁ(k,f)[ atkd

B,a,y are the geometric factors, and #,£ are the transformed
coordinates.

Solution Method

In order to initiate numerical simulation, a very thin layer of
freeze with a constant thickness zy,,(o) Was assumed to be present.
This initial condition is obtained from the Stefan solution in the
freeze and a linear temperature distribution in the frozen layer.
Tests revealed that the influence of zp,,,(g) could be neglected as
Zmov(o) Was sufficiently small.

The transient heat equations (Egs. (11) and (12)) and the Stefan
equation (Eq. (13)) are solved by using implicit-finite difference
method. A system of nonlinear equations results whereby each
equation for the internal nodes can be cast into a numerical dis-
cretization.

In transient heat equation for unfrozen layer,
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G.{Af
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In transient heat equation for frozen layer,
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In Stefan condition,
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: I:(k+1.f)—1;’(k—1,f)] 1 [X(k,i+1;;;(1:,:‘—1)][Ij{k+l,i)—if’;(k—l,i)]*dz(k‘f))

287 (15)
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The details of computational schemes and strategy for solving
the combined transfinite interpolation functions (Egs. (8) and (9))
and PDE mapping (Eqgs. (14)-(16)) are illustrated in Fig. 3.

The calculation conditions were as follows:

(1) The time step of dt=1s is used for the computation of
( sart )

v
( Initial inp ut
—

Freezing front
conditions

v

Mesh
construction

!

t=t-Hdt

Calcubtionof T

- 5

yes

Data output

End

Fig. 3 Strategy for calculation
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temperature field and location of freezing front

(2) Number of grid: N=100(length) X 100(height).

(3) Relative errors in the iteration procedure of 107% were
chosen.

Experiment

The freezing experiments are performed in a rectangular test
cell filled with a PM (porosity, ¢=0.4) with inside dimensions of
10 cm in length (x), 5 cm in height (z), and 2.5 cm in depth (y).
The partial horizontal top wall and bottom wall and the vertical
front and back walls are made of acrylic resin with a thickness of
3 mm. The entire test cell is covered with 8 cm thick Styrofoam
on all sides to minimize the effect of heat losses and condensation
of moisture at the walls. The partial top wall, which serves as a
constant temperature heat sink, is multipass heat exchanger. Heat
exchanger is connected through a valve system to constant tem-
perature bath where the liquid nitrogen is used as the cooling
medium. The distributions of temperature within the sample are
measured using the thermocouples with a diameter of 0.15 mm.
Thirty thermocouples are placed at the midplane of test cell (y
=1.25 cm) in both horizontal and vertical directions (x—z plane)
with longitudinal and transverse intervals of 10 mm. These ther-
mocouples are connected to data logger and computer through
which the temperatures could be measured and store at prese-
lected time intervals. The positions of freezing front in the sample
are determined by interpolating the fusion temperature from the
thermocouple reading.

The uncertainty in the results might come from the variations in
humidity, room temperature, and human error. The calculated un-
certainty associated with temperature is less than 2.70%. The cal-
culated uncertainties in all tests are less than 2.75%.

Results and Discussions

Validation Test. In order to verify the accuracy of the present
numerical study, the present numerical algorithm was validated by
performing simulations for a planar freezing front in a phase
change slab (water) with a dimension of 10 cm(x) X 5 cm(z). The
initial temperature of 0°C is described throughout each layer.
Thereafter, the constant temperature heat sink (7;,=-80°C) is im-
posed on the partial top wall. The results are compared with the
analytical solution appeared in the classical paper [32], which is
also commonly referred to in literature, for the freezing of a phase
change slab (water) at the same condition. Figure 4 clearly shows
a good agreement of the locations of freezing front. All of these
favorable comparisons lend confidence in the accuracy of the nu-
merical results of the present work.

Freezing Front Tracking Grid Generation System. To illus-
trate the efficiency of the grid generation system during the freez-
ing of water in a rectangular cavity with a dimension of
10 cm(x) X 5 cm(z) filled with a PM (porosity, ¢=0.4) subjected
to a constant temperature heat sink (single heat sink with strip
length of 20 mm), the initial temperature of 0°C is described
throughout each layer. Thereafter, the constant temperature heat
sink (7;=-40°C) is imposed on the partial top wall. The calcu-
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lated results are based on the thermal properties from Table 1.

In order to check the influence of numerical grid on the solu-
tions, computations were carried out using 100X 50 and 100
X100 grids on entire computational domain, respectively. The
results obtained from this study are presented in Fig. 5 in the form
of an interface deformation (freezing front). It is obvious from the
figure that with the present method, the overall interface deforma-
tion qualitatively remains the same for two different grids; how-
ever, the spreading of the melt in both directions in the first case
(using 100X 50 grids) is higher than the second case (using 100
X 100 grids). In addition, it is also evident that the solution was
yet to reach a grid independent state. At this point, it may be
mentioned here that the main objective of the present paper is not
to demonstrate the features of phase change freezing problem but

0.01 2
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0.05 == e
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0.05 0.075 0.1
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0.075 01

Fig. 5 The interface deformation in computational domain
with different numerical grids: (a) 100X50 grids (b) 100<X100
grids
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to present novel numerical approach to solve phase change prob-
lem on a moving grids. Hence, no further study was carried out to
obtain a grid independent solution and all the subsequent results
are presented for 100 100 grid.

The following results (Figs. 6(a)-6(f) show grids that fit curves,
which are the typical shapes seen during deformation of an inter-
face with respect to elapsed times. Furthermore, the grids show
significant variation of density and skewness along the interface.
It can be seen that the location of freezing front is progressed with
respect to elapsed times. During the initial stages of freezing, the
shape of the interface in each region becomes flatter as the freez-
ing front moves further away from the fixed boundary indicating
principally 1D heat flow. As time progresses, the curve on the
interface gradually beetles indicating the 2D effect.

Figure 7 shows the measured and simulated results of the freez-
ing front during the freezing of water in a rectangular cavity (with
a dimension of 10 cm(x) X 5 c¢m(z)) filled with a PM subjected to
a constant temperature heat sink. In this comparison, the single
constant temperature heat sink, T, =—40°C, is applied. The obser-
vation of the freezing front depicted from the figure reveals that
the simulated results and experimental results are qualitatively
consistent. However, the experimental data are significantly lower
than the simulated results. Discrepancy may be attributed to heat
loss and nonuniform heating effect along the surface of supplied
load. Numerically, the discrepancy may be attributed to uncertain-
ties in the thermal and physical property data. In addition, the
source of the discrepancy may be attributed to natural convection
effect in liquid. :

It is found that the grid is able to maintain a significant amount
of orthogonality and smoothness both within the interior and
along the boundary as the grid points redistributed themselves to
follow the interface. These results show the efficiency of the
present method for the moving boundary problem.

Freezing Process. The present work is to couple the grid gen-
eration algorithm with the transport equations. The thermal analy-
sis during freezing process will be discussed in this section. The
simulations of temperature distribution within rectangular cavity
filled with porous media in the vertical plane (x—z) corresponding
to grid simulating the deformation of an interface (Figs. 6(a)-6(f))
are shown in Figs. 8(a)-8(f). Since the present work is to couple
the grid generation algorithm with the transport equations, the
thermal analysis during freezing process will be discussed as fol-
lows. When a constant temperature heat sink is applied during
localized freezing process, heat is conducted from the hotter re-
gion in unfrozen layer to the cooler region in frozen layer. At the
initial stages of freezing, the freezing fronts seem to be a square in
shape indicating principally 1D heat flow, as explained for Figs.
6(a)-6(f). Later, the freezing fronts gradually exhibit a typical
shape for 2D heat conduction dominated freezing. However, as
the freezing process persists, the freezing rate progresses slowly.
This is because most of heat conduction takes place the leading
edge of frozen layer (freeze layer), which is located further from
unfrozen layer. Consequently, small amount of heat can conduct
to the frozen layer due to the freeze region acting as an insulator
and causing freezing fronts to move slowly with respect to elapsed
times. Considering the shapes of the freezing front with respect to
elapsed times, each freezing region of the rectangular cavity
shows signs of freezing, while the outer edge displays no obvious
sign of freezing indicating that the temperature does not fall below
0°C. Nevertheless, at the long stages of freezing, the spreading of
the freeze in both the x—z directions (semicircular shape) is
clearly shown.

This study shows the capability of the present method to cor-
rectly handle the phase change problem. With further quantitative
validation of the present method, this method can be used as a tool
for investigating in detail this particular freezing of phase change
slab at a fundamental level.
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Conclusions

Mesh quality has the largest impact on solution quality. A high
quality mesh increases the accuracy of the computational flow
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Fig. 7 Comparison of experimental data and simulated freez-
ing front from present numerical study
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solution and improves convergence. Therefore, it is important to
provide tools for obtaining and improving a mesh.

In this study, the freezing of water in a rectangular cavity filled
with a PM subjected to a constant temperature heat sink has been
investigated numerically. A generalized mathematical model and
an effective calculation procedure is proposed. A preliminary case
study indicates the successful implementation of the numerical
procedure. A two-dimensional freezing model is then validated
against available analytical solutions and experimental results and
subsequently used as a tool for efficient computational prototyp-
ing. Simulated results are in good agreement with available ana-
lytical solution and experimental results. The successful compari-
son with analytical solution and experiments should give
confidence in the proposed mathematical treatment, and encour-
age the acceptance of this method as useful tool for exploring
practical problems.

The next phase, which has already begun, is to couple the grid
generation algorithm with the complete transport equations that
determine the moving boundary front and buoyancy-driven con-
vection in the unfrozen layer (liquid). Moreover, some experimen-
tal studies will be performed to validate numerical results.
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1 General Transformation of the First and Second De-
rivatives

Considering the first derivative of any parameters can be writ-

Nomenclature R
a = thermal diffusivity (m?/s)
C, = specific heat capacity (J/kg K) 9 1 4 3
L = latent heat (J/kg) o Z’?ag—zfaq
I = temperature (°C)
r = tme (s)
t.z = (artesian coordinates 7] 1( a 5) (A1)
% = effective thermal conductivity (W/mK) e | i e Al
& = porosity % Ea” "9
Sabscripts where J is Jacobian. It can be written as
| = initial
7 = fusion
j = layer number J=xg,—x,2; (A2)
! = unfrozen_
r = frozen
= (A3)
x;_ a& £x2

A ppendix

—= === szcuon. we will derive a transformation model of the Considering the second derivative of any parameters, we will es-
'z &ifferential equations for using in the numerical calcu-  tablish the second derivative of Laplace equation of parameter A

wmom [ ne details are shown below. where Egs. (A1) and (A3) are related:
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where
a=x3+72
B=xgpt+zga,
y=x;+2 (A5)

Xg Xg Zg and z, denote the partial derivatives, 3,a,y are the
geometric factors, and 7, £ are the transformed coordinates. The
related parameter can be defined as

x=x(§7) z=z&n) or E=E(x,2) n=7nlxz)
U

x=x(8) z=z&n) oré=¥&x) n=nlxz)

ox J
i x,?—a——O or §x—§—0 (A6)
7

Corresponding to Eq. (A6), the first derivative of any parameters
(Eq. (A1)) can be rewritten as

a 1( a a) é 1( a a)
sy 2 4y o 1 & @
& IVTE Lol @ I\Cam e

4
aa l(z”aag fa(i;) ai: }( 5;) (A%
where
J=xgzy—Xze
U
I=xa, (A8)

The second derivative of any parameters (Eq. (A4)) can be also
rewritten as

FPA FA  FA\ 1
VZAz}E(aa—EZ— Ea§§q+ ?—61]2) |:(ax§§—23x§,?+ 'yxw)
dA dA dA dA
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“PR\"e " ‘Bagaq Yad] © P| \\* 5, " ae
dA
+(azge~2pBzgy + ’ﬂw)(- xfg}) ] (A9)
where
a:xf?d-zf? B:xfx,?-&zfz,, y=x§+z§
U
a=zf? B=zg, 'y=x§+z§ (A10)
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2 Transformation of Thermal Model

After some mathematical manipulations (Egs. (A7), (A9). (3).
and (4), and Eq. (5)), a transformation mode] of the governing
differential equations becomes

ﬁ ( 3?"1} nc?zT_, asz) ﬂ. ( é” 5}:—
a P\ af 6‘.‘381? Targ) T B\ %ag )\ %€ 5
aT;) #z 2502 &z N c?!z( JT;]
+a— - = —x—
“06) T %98 " Fotan™ Yo\ oy
1( arr,)dz ) -
P\ e & -
o ( &#T, ,sasz aZT,) a{( ﬂ)[i
a P\" o Totan” Yop) T P\"e8)\%5y
6‘T,) =z BB &z N c?zz( @)]
“Tog )" o™ Fotan” Yo\ oy
1{ dT,\dz
~|x=)= A
+J’(x£67;)dr (A12)
]' JI‘ 611 1 a mov a mov 2
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AN an J 9 an
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