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ABSTRACT 
The melting of frozen packed beds by microwave with rectangular wave guide has been 
investigated numerically and experimentally. It was performed for the two different layers, 
which consists of frozen and unfrozen layers. Based on the model combined the Maxwell 
and heat transport equations, the results show that the direction of melting against the 
incident microwave strongly depends on the structure of layered packed beds because the 
difference in the dielectric properties between water and ice. Q 21.101 Elsevier Science Ltd 

A study of melting process in material expose to microwave was studied by Pangrle et al. [l] and 

[2], which the one-dimensional model was developed for microwave melting of cylinders. Later, Zeng et 

al. [3] carried out two-dimensional microwave thawing in cylinders and their model predictions were 

compared with experimental data. In a recent work, Basak et al. [4] carried out microwave thawing 

studies with fixed grid based effective heat capacity method coupled with Maxwell’s equations. 

A number of other analyses of the microwave melting process have appeared in the recent literature 

(Coleman [5], Bialod et al. [6] and Cleland et al. [7]). However, most previous work the microwave 

energy absorbed was assumed to decay exponentially into the sample following the aid of Lambert’s law. 

This assumption is valid for the large dimensions of sample used in study. For the small sample, the 

spatial variations of the electromagnetic field and microwave power absorbed within sample must be 

obtained by a complete solution of the unsteady Maxwell’s equations. 

Due to the limited amount of theoretical and experimental work on microwave melting process, the 

various effects are not fully understood and a number of critical issues remain unresolved. These effects 

of reflection rate of microwave and degree of incident wave penetration into the sample during 

microwave melting process have not been studied systematically. 
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Although previous investigation is replete with one-dimensional melting process, a little effort has been 

reported on study of two-dimensional heating process by microwave fields, especially, full comparison of 

prediction from mathematical model with experimental melting data. This study reports a comparison of 

simulations based on a two-dimensional model with experimental measurement in which the microwave 

of TE,,, mode operating at a frequency of 2.45GHz is employed. 

ExDerimental ADDaratus 

Figure 1 shows the experimental apparatus used. The microwave system was a monochromatic wave of 

Z’E,, mode operating at a frequency of 2.45GHz. MW energy is transmitted along the z-direction of the 

rectangular wave guide with inside dimensions of 109.22 mm x 54.61 mm toward a water load that is 

situated at the end of the wave guide. The water load (lower absorbing boundary) ensures that only a 

minimal amount of microwave is reflected back to the sample, while an upper absorbing boundary, which 

is located at the end of wave guide. is used to trap any microwave reflected from the sample to prevent it 

from damaging the magnetron. The sample studied is a multi-layered packed beds, which is consisted of a 

frozen layer (glass beads and ice) with thickness of 50 mm and the unfrozen layer (glass beads and water) 

with thickness of 50 mm. It is inserted in the rectangular wave guide. Output of magnetron is adjusted as 

1OOOW. Dielectric properties of the sample at various conditions were measured [8]. During the 

experiment, the microwave field was generated using a magnetron (Micro Denshi Co., Model UM-1500). 

The powers of incident. reflected and transmitted waves were measured by wattmeter using a directional 

coupler (Micro Denshi Co., model DR-5000). 

FIG 1 
Experimental apparatus. 
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FIG 2 
Analytical model. 
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Mathematical Model Analvsis 

Assumations and Analvsis of Electromagnetic Field 

Figure 2 shows the analytical model for microwave melting of multi-layered packed beds using a 

rectangular wave guide. 

Assumntions The proposed model is based on the following assumptions: 

(I) Since the microwave field is operated in TElO mode, it propagates in a rectangular wave guide 

independently of the y-direction. Hence the electromagnetic field can be assumed to be two-dimensional 

plane (x-z plane), (2) the absorption of microwave energy by the cavity (including air) in the rectangular 

wave guide is negligible. (3) the walls of a rectangular wave guide are perfect conductors, 

(4) the effect of the sample container on the electromagnetic field can be neglected. 

Basic equations 

The basic equations for the electromagnetic field are based on the well-known Maxwell relations. 

When a microwave field propagates though an isotropic medium, the governing equations are as follows: 

(1) 

V.E=y (3) 
E 

V.H =0 (4) 

For the microwave of TEla mode. the components of electric and magnetic field intensities are given by: 

E,=E,=Hy=O 

E,, Hy, II2 * 0 

Using the relation of Eq.5, the governing equations (Eqsl-4) can be written in term of the component 

notations of electric and magnetic field intensities: 

where. pcrmittivity ( E ). magnetic permeability (;r ) and electric conductivity ((T ) are given by: 
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P = Cl&, (10) 

0=27&tan6 (11) 

Further, because the dielectric properties of each material are assumed to vary with temperature, the 

effective dielectric properties in multi-layered packed beds utilized throughout this study are obtained by 

using a mixing formula [91. 

Ekntndarv conditions 

Corresponding to the analytical model shown in Fig. 2, boundary conditions can be given as follows; 

(a) Perfectly conducting boundaries; boundary conditions on the inner wall surface of a rectangular wave 

guide are given by using Faraday’s law and Gauss’ theorem: 

E, = 0, H,, = 0 (12) 

where subscripts h and n denote the components of tangential and normal directions, respectively. 

(b) Continuity boundary condition; boundary conditions along the interface between different materials, 

for example between air and dielectric material surface, are given by using Ampere’s law and Gauss 

theorem: 

E,, = E’,, , H,, = H',, 

D,, = D',,, B,, = B',, 
(13) 

where ’ denotes one of the different materials. 

(c) Absorbing boundary condition; at the both ends of the rectangular wave guide, the first order 

absorbing conditions proposed by Mur [ 101 are applied: 

al? dE 
-‘-=*~-L 

at a2 

Here, the symbol +- reprcscnts forward or backward waves and 

(d) Oscillation of the electric and magnetic flied intensities 

magnetron is given by the following equations: 

E!, = E?,,,, sin 7 sin(23cjf) 

( 1 II 

If., = >sin t sin@@) 
H ( 1 .v 

(19 

u is phase velocity of the microwave. 

by magnetron; the incident wave due to 

(15) 

(16) 

E,,,, is the input value of clcctric field intensity. L, is the length of rectangular wave guide in x-direction. 

Z,t IS the wave tmpedancc 
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Assumutions and Analvsis of Heat Transnort 

The temperature of the sample exposed to incident wave is obtained by solving the conventional heat 

transport equation with the microwave energy absorbed included as a local electromagnetic heat 

generation term. 

Assumotions In order to analyze the process of heat transport due to microwave melting of multi-layered 

packed beds, we introduce the following assumptions: 

(1) Corresponding to electromagnetic field. temperature field also can be assumed to be two-dimensional 

plane (x-z plane), (2) the surroundings of multi-layered packed beds are insulated, (3) the effect of the 

container on temperature field can be neglected, (4) the effect of the natural convection can be neglected, 

(5) local thermodynamics equilibrium is assumed, (6) in this study. in a macroscopic sense, the pore 

structure within the material is assumed to be homogeneous and isotropic. Therefore. a heating model for 

a homogeneous and isotropic material is used in the current analysis. 

Basic eouations The governing energy equation describing the temperature rise in the multi-layered 

packed beds are the time dependent heat diffusion equation: 

(18) 

where u is the thermal diffusivity and Q is the microwave energy absorbed term 1161 

(a) Adiabatic condition; assuming that the surroundings of multi-layered materials are insulated: 

a1 
-SO 
(In 

(19) 

(b) Moving front boundary condition: the moving boundary between the unfrozen layer and 

frozen layer is described by the Stefan equation: 

where subscript f?ou denotes solid-liquid fronts. 

Mesh construction and Coordinate Transformation 

For the construction itself of II coordinate mesh around cvcn a sample mulli-layered packed hcds. 

the method of constructing a Iwo-dimensional houndary-conforming grid I’or a microwave melting 

configuration is a direct algchraic approach hascd on Ihe conccpl of lransfinilc or multivarialc 
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interpolation [17]. Furthermore, when the boundaries of the physical domain move with time, it is 

convenient to introduce a general curvilinear coordinate system: 

x = x(E,rl),z = z(g,rl) or 5 = E(x,z),rl = r&z) (21) 

The moving boundaries are immobilized in the dimensionless (E,q) coordinate for all times. With the 

details omitted, then the transformation of Eqs.(6)-(8) and Eqs.(17)-(20) are defined as: 

(22) 

(23) 

(24) 

(25) 

(26) 

(2’) 

where J=X,.z,,-X,;Z,, n=X,,‘+Z,,~,B=X~‘X,,+Z~‘Z,,,y=X~’+z,’ (28) 

Here. xc, X,,, ZE and z,, denote partial derivatives. J is the Jacobien. lj,01, y are the geometric 

factors and q, E arc the transformed coordinates. 

Numerical Solution Method 

In order to predict the clcctromagnctic field. a finite diffcrcnce time domain (FDTD) method is applied 

[II I. The heat transport equation must hc solved by the method of finite diffcrcnccs hascd on the notion 
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of control volumes as described by Patankar [12]. Therefore, the calculation conditions are as follows: 

(1) Because the propagating velocity of microwave is very fast compared with the rate of heat transfer, 

different time steps of 1 X 10 -I2 [s] and 1 [s] are used for calculations of the electromagnetic field and 

temperature field, respectively, (2) number of grid; N = 112 (width) X 605 (length), (3) relative errors in 

the iteration procedure of 10-a were chosen. 

Results and Discussions 

The Temperature Distributions and Melting Front 

Figures 3 and 4 show the simulations of temperature distributions within the multi layered packed beds in 

the vertical plane (x-z) for the cases setting the frozen layer on and under the unfrozen layer, respectively, 

which correspond to that of initial temperature with 0°C and microwave power input of 1OOOW. Some of 

electromagnetic and thermo-physical properties used in the computation are given in Table 1. 

TABLE 1 
The electromagnetic and thermo-physical properties used in the computations 

E, =885419x10 “[F/m], ,q, = 4.07r x10-‘[H/m] 

& ,~ = 1.0 t‘ ,p =5.1 

/.l,, = 1.0 ,L$ = 1.0 

tansa =O.O tan6, = 0.0124 

/l, = 1.0 /I, = LY10.9[kg/m3] 

p, = 1000.0[kgm3] c II, = I.ZXO[kJ/(kg’ K)] 

cp, = 2.09Y[kl/(kg. K) J 

Al = 0.610[ W/(m . K)] 
A3 = 1.48[W/(m. K)] 

Figure 3. for the case setting a frozen layer on the unfrozen layer, since an ice in a frozen layer is 

highly transparent material, so that the incident microwave is easily irradiated to the unfrozen layer is 

highly absorptive material. In Fig. 3, it is seen that the maximum temperature was located at the leading 

edge of a unfrozen layer leads to heat transfer from the hotter region of higher microwave energy 

absorption (unfrozen layer) to the cooler. low microwave energy deposition region (frozen layer). As the 

thickness of unfrozen layer is increased due to the melting of frozen layer is progressed. where the 

strength of the microwave energy absorbed incrcascs (Fig. 5). Consequently. the movement of melting 

front occurs at the interface bctwccn frozen layer and unfrozen layer. The tcmpcraturc distribution within 

the unfrozen layer has a wavy shape and decays slowly along the propagation direction because a stronger 

standing waves form in the unfrozen layer. Furthcrmorc. setting of a frozen layer on the unfrozen layer 

protects the rellection of wave from the surface leads to increase the penetration depth of the microwave 

inside the unfrozen layer. With increasing time the tcmperaturc distribution within the unfrozen layer 

rapidly rises. causing the melting process to rise up. Ncvcrthclcss. the tempcraturc distribution within the 

frozen layer stays colder due to the diffcrcncc hctwccn the diclcctric propcrtics of water and ice This is 

bccausc the water is a highly ahsorptivc material. while ice is highly transparent (which corresponds to 



758 P. Ratanadecho, K. Aoki and M. Akahori Vol. 28, No. 6 

0 0. 020. 040. 060. 08 0. 1 

Position xhJ 

(a) 30s 

0 0. 020. 040. 060.08 0. I 

Position xid 

@)6Os 

0 0. 020. 040. 060.08 0. 1 

Position xhl 

(c) 90s 

FIG. 3 
Simulation of T at various times 
frozen layer on the unfrozen layer) 

(Setting the 

0 0. 020. 040.060. 08 0.1 

Position rbd 

(a) 30s 

0 

y 0.02 
e 
; 0.04 

*r: 
.; 0. 06 

4: 
4 0.08 

0. 1 
0 0. 020. 040. 060. 08 0.1 

Position xLd 
03160s 

0 0. 020. 040. 060. 08 0. 1 

Position xb1 

(c) 90s 

FIG. 4 
Simulation of T at various times (Setting the 

, 
frozen layer under the unfrozen layer) 



Vol. 28, No. 6 MICROWAVE MELTING OF FROZEN PACKED BEDS 759 

QE~ fm31 
(a} 30s 

Q![m / m’l 
6) 60s 

MICROWAVES 

4 

(c) 90s 

FfG. 5 

Simulation of Q at wrious times (Setting the 
frozen layer on the unlrozcn Izrycr) 

Q[Mw fm31 

(a) 30s 

QCM 1 m31 

(c) 90s 

FIG. 6 

Simulation ol’ Q :I[ various times (Setting the 
frozen Iuycr under the tin~r~~~~n Iaycr) 



760 P. Ratanadecho. K. Aoki and M. Akahoti Vol. 28, No. 6 

the lower microwave energy absorbed within frozen layer). At time 9Os, there is a difference of about 92 

degrees between the maximum and minimum temperatures. 

On the other hand, in the latter case is shown in Fig.4, since the incident wave passing through cavity 

having low permittivity is directly irradiated to the unfrozen layer having high permittivity, the major part 

of microwave is reflected from the surface of unfrozen layer and having of the frozen layer under the 

unfrozen layer protects the reflection of microwave from the interface between the unfrozen layer and 

frozen layer. void the formation of standing waves leads to the strength of the microwave energy 

absorbed decreases (Fig. 6). Additionally, it is seen that the microwave energy absorbed within the 

unfrozen layer situated closet to the incoming microwave and slowly rises with the elapsed time. 

However, the microwave energy absorbed within the frozen layer is almost the same to former case 

indicating the dielectric properties dominated melting process. At 9Os, there is a difference of about 55 

degrees between the maximum and minimum temperatures. In contrast to that in the former case, the 

melting rate slowly rises with the elapsed time for this case. The following discussion refers to the effect 

of dielectric properties on the melting front during microwave melting process. Figures 7(a) and (b) show 

the measured and predicted results of the melting front for the cases of setting a frozen layer on and under 

the unfrozen layer, respectively. 
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0 

FIG. 7 
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(b) 

Measured and predicted interface position. (a) Setting a fr:rozcn layer (solid) on the unfrozen 
layer (liquid). (b) setting a frozen layer (solid) under the unfrozen layer (liquid) 

In the former case. the shape of the melting front at various times is shown in Fig. 7(a). it can he seen 

that for the early stage of melting process. the melting front is almost parallel to the interlace hctwecn 

frozen layer and unfrozen layer. Later. the melting front gradually exhihits a shape typical for microwave 

dominated melting. Since the most of the heating takes place at the middle region of rcclangular wave 

guide. so that the intcrfacc moves faster in this location whcrc the liquid water at the melting front 
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strongly absorbs the microwave energy (as referred to Fig.5). However, the melting rate decreases toward 

the sidewalls, since the microwave energy absorbed in this location has a weak distribution. 

On the other hand, in the latter case is shown in Fig.7 (b), Due to the high value of permittivity, the 

skin-depth heating effect causes a major part of the incident wave to be retlected from the surface of 

unfrozen layer (liquid) during the microwave melting process. This phenomenon explains why the 

microwave energy absorbed within the unfrozen layer in the this case (as referred to Fig. 6) is slightly 

lower than that observed in the former case and why the heating (Fig. 4) and microwave energy absorbed 

(Fig. 6) are more intense close to the leading edge of the unfrozen layer. In contrast to that in former case, 

the melting front is slowly moves with the elapsed time, and the melting front moves slowly along the 

propagation direction due to the characteristics of dielectric properties as explained in above paragraph. 

During the experiment of microwave melting process, the impact on the uncertainty of our data may 

cause by variations in humidity, room temperature and another effects. The uncertainty in melting kinetics 

was assumed to result from errors in the measured melting front of the sample. The calculated melting 

kinetic uncertainties in all tests were less than 3.5 percent. The uncertainly in microwave energy absorbed 

was assumed to result from errors in measured input power and retlected power. The calculated 

uncertainty associated with temperature was less than 2 percent, 

Conclusions 

The following results concerning the microwave melting phenomena were obtained: 

(1) A generalized mathematical model of melting process by microwave is proposed. It has been 

successfully used to describe the melting phenomena of several conditions. (2) The melting of frozen 

packed beds was performed for the two different layer packed beds which consists of frozen and unfrozen 

layers. The direction of melting against the incident microwave strongly depends on the structure of 

layered packed beds because of the difference in the dielectric properties bctwecn water and ice. (3) 

Based on a model combined the electromagnetic and temperature fields. the predicted results were in 

good agreement with the experimental results for the melting of frozen packed beds. 

Nomenclature 

Ll thermal diffusivity [m ‘/s] L latent heat [J/kg] 

c,> spocil’ic heat capacity [J/kgK] 
Q microwave energy ahsorhed term [W/m ’ ] 

q electric charge density [C/m’ ] 

E clcctric field intonsity [V/m] T tempcraturc [Cl 

J Crcqucncy of incident wave [Hz] t time [s] 

H magnclic field intensity [A/ml lanc’i loss tangent cocflicionl [-I 
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x, y, z Cartesian coordinates [-] 

Greek letters 

& permittivity [F/m] 

/J magnetic permeability [H/m] 

u velocity of microwave [m/s] 

Subscripts 

0 free space 

a air 

j layer number 

u electric conductivity [S/m] 

w angular frequency [rad/s] 

A effective thermal conductivity [W/mK] 

I liquid 

r relative 

S solid 
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Abstract

A two-phase Stefan problem with heat source terms of a general similarity type in both liquid and
solid phases for a semi-infinite phase-change material is studied. We assume the initial temperature is a
negative constant and we consider two different boundary conditions at the fixed face x = 0, a constant
temperature or a heat flux of the form −q0/

√
t (q0 > 0). The internal heat source functions are given by

gj (x, t) = ρl
t βj ( x

2aj

√
t
) (j = 1 solid phase; j = 2 liquid phase) where βj = βj (η) are functions with ap-

propriate regularity properties, ρ is the mass density, l is the fusion latent heat by unit of mass, a2
j

is the
diffusion coefficient, x is the spatial variable and t is the temporal variable. We obtain for both problems
explicit solutions with a restriction for data only for the second boundary conditions on x = 0. Moreover,
the equivalence of the two free boundary problems is also proved. We generalize the solution obtained in
[J.L. Menaldi, D.A. Tarzia, Generalized Lamé–Clapeyron solution for a one-phase source Stefan problem,
Comput. Appl. Math. 12 (2) (1993) 123–142] for the one-phase Stefan problem. Finally, a particular case
where βj (j = 1,2) are of exponential type given by βj (x) = exp(−(x + dj )2) with x and dj ∈ R is also
studied in details for both boundary temperature conditions at x = 0. This type of heat source terms is
important through the use of microwave energy following [E.P. Scott, An analytical solution and sensitiv-
ity study of sublimation–dehydration within a porous medium with volumetric heating, J. Heat Transfer
116 (1994) 686–693]. We obtain a unique solution of the similarity type for any data when a temperature

* Corresponding author.
E-mail addresses: adriana.briozzo@fce.austral.edu.ar (A.C. Briozzo), maria.natale@fce.austral.edu.ar

(M.F. Natale), domingo.tarzia@fce.austral.edu.ar (D.A. Tarzia).
0022-247X/$ – see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2006.05.083
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boundary condition at the fixed face x = 0 is considered; a similar result is obtained for a heat flux condition
imposed on x = 0 if an inequality for parameter q0 is satisfied.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Stefan problem; Free boundary problem; Lamé–Clapeyron solution; Neumann solution; Phase-change
process; Fusion; Sublimation–dehydration process; Heat source; Similarity solution

1. Introduction

Following Scott [20], sublimation–dehydration or freeze–drying, is used as a method
for removing moisture from biological materials, such as food. Some of the advantages of
sublimation–dehydration over evaporative drying are that the structural integrity of the material
is maintained and product degradation is minimized (Ang et al. [1], Rosenberg, Bögl [19]). The
major disadvantage of the freeze–drying process is that it is generally slow, and consequently,
the process is economically unfeasible for certain materials. One of the means of alleviating this
problem is through the use of microwave energy.

Several mathematical models have been proposed to describe the freeze–drying process with-
out microwave heating (Fey, Boles [10], Lin [13]). Only a few studies have also included a
microwave heat source in the model (Ang et al. [1]). Phase-change problems appear frequently
in industrial processes; a large bibliography on the subject was given recently in Tarzia [22].

In Menaldi, Tarzia [14] the one-phase Lamé–Clapeyron–Stefan problem [12] with internal
heat sources of general similarity type was studied and a generalized Lamé–Clapeyron explicit
solution was obtained. Moreover, necessary and sufficient conditions were given in order to char-
acterize the source term which provides a unique solution.

In Bouillet, Tarzia [5], the self-similar solutions θ(x, t) = θ(η) = θ(x/
√

t ) of the problem

E(θ)t − A(θ)xx = 1

t
B(η), η > 0,

θ(x, t) = C > 0, t > 0,

E
(
θ(x,0)

) = 0, x > 0,

were studied where E and A are monotone increasing functions, A being continuous, with
E(0) = A(0) = 0 and λ = E(0+) > 0. This equation can describe the conservation of thermal
energy in a heat conduction process for a semi-infinite material with a “self-similar” source or
sink term of the type B(x/

√
t )/t . Moreover, E(θ) represents an energy per unit volume at level

(temperature) θ , A′(θ) � 0 is the thermal conductivity and B(η)/t represents a singular source
or sink depending of the sign of the function B . It was obtained for the inverse function η = η(θ)

an integral equation equivalent to the above problem and it was proven that for certain hypothe-
ses over data there exists at least a solution of the corresponding integral equation following
Bouillet [4].

Several applied papers give us the significance of the source terms in the interior of the ma-
terial which can undergo a change of phase, e.g. Bhattacharya et al. [3], Carslaw, Jaeger [6],
Feng [9], Grigor’ev et al. [11], Mercado et al. [15], Ratanadecho et al. [17], Ward [23]. In
Scott [20] there is a mathematical model for sublimation–dehydration with volumetric heating
of a particular exponential type from which analytical solutions for dimensionless temperature,
vapor concentration, and pressure were obtained for two different temperature boundary condi-
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tions. It was considered a semi-infinite frozen porous medium with constant thermal properties
subject to a sublimation–dehydration process involving a volumetric heat source of the type

g(x, t) = const.

t
exp

(−(x + d)2).
A sensitivity study was also conducted in which the effects of the material properties inherent
in these solutions were analyzed. The mathematical analysis of the analytical solutions is only
given from the numerical computation point of view. In one phase is taken d equals to 0 and in the
other one d is proportional to the constant λ which characterizes the interface position; this last
choice is, for us, a nonadequate choice of a parameter because it depends on the solution itself.

Analytical solutions can provide important insights into the importance of different mate-
rial properties on the solution, which can aid in the development of improved mathematical
models for this process. These solutions provide an important means of evaluating numerical
schemes which can later be used with less restrictive assumptions, if necessary, to simulate ac-
tual processes. Moreover, it can be used to obtain super and sub solutions for general conditions
by using the maximum principle.

In this paper a semi-infinite homogeneous phase-change material initially in solid phase at
the uniform temperature −C < 0, with a volumetric heat source, is considered. A mathematical
description for the temperature within the material is given by

∂T2

∂t
(x, t) = a2

2
∂2T2

∂x2
(x, t) + 1

ρc2
g2(x, t), 0 < x < s(t), t > 0; (1)

∂T1

∂t
(x, t) = a2

1
∂2T1

∂x2
(x, t) + 1

ρc1
g1(x, t), x > s(t), t > 0; (2)

for two given internal source functions (Bouillet, Tarzia [5], Menaldi, Tarzia [14], Scott [20])
given by

gj = gj (x, t) = ρl

t
βj

(
x

2aj

√
t

)
, j = 1,2, (3)

where βj = βj (η) are integrable functions in (0, ε) ∀ε > 0 and βj (η) exp(η2) are integrable
functions in (M,+∞) ∀M > 0. We assume that β1(η) � 0, β2(η) � 0 and ρ is the mass density,
l is the fusion latent heat per unit of mass, a2

j is the diffusion coefficient, cj is the specified heat
per unit of mass and kj is the thermal conductivity, for j = 1,2.

The initial temperature and the temperature as x → ∞ are assumed to be constant

T1(x,0) = T1(+∞, t) = −C < 0, x > 0, t > 0. (4)

At x = 0, two different temperature boundary conditions are considered, the first is a constant
temperature condition

T2(0, t) = B > 0, t > 0, (5)

which is studied in Section 2.1, and the second is an assumed heat flux of the form

k2
∂T2

∂x
(0, t) = −q0√

t
, t > 0, (6)

which is studied in Section 3.
We remark that −q0/

√
t denotes the prescribed heat flux on the boundary x = 0 which is

of the type imposed in Tarzia [21] where it was proven that the heat flux condition (6) on the
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fixed face x = 0 is equivalent to the constant temperature boundary condition (5) for the two
phase Stefan problem for a semi-infinite material with constant thermal coefficient in both phases
without source terms. This kind of heat flux condition was also considered in several papers, e.g.
Barber [2], Coelho Pinheiro [7], Polyanin, Dil’man [16], Rogers [18].

The phase-change interface condition is determined from an energy balance at the free bound-
ary x = s(t):

k1
∂T1

∂x

(
s(t), t

) − k2
∂T2

∂x

(
s(t), t

) = ρlṡ(t), t > 0, (7)

where the temperature conditions at the interface are assumed to be constant:

T1
(
s(t), t

) = T2
(
s(t), t

) = 0, t > 0. (8)

Moreover, the initial position of the free boundary is

s(0) = 0. (9)

In Section 2.1 we obtain an explicit solution for the problem (1)–(5), (7)–(9), when the gen-
eral type of sources given by (3) verifies appropriate properties, and in Section 2.2 we give
monotonicity properties of the solution. Both results are obtained for any data and thermal coeffi-
cients (particularly for all β’s source terms). We remark that when we consider the particular case
C = 0 and β1 = 0 we obtain the solutions given in Menaldi, Tarzia [14] for the one-phase case.

In Section 3 we solve the same free boundary problem but with the heat flux condition of
the type − q0√

t
(q0 > 0) prescribed on the fixed face x = 0, and we obtain an explicit solution

to this problem if the coefficient q0 satisfies an appropriate particular inequality given by (46).
This result is new for the analytical solution. Furthermore, if we take β1 = β2 = 0 we get the
inequality (46) which was given in Tarzia [21] for the classical two-phase Stefan problem.

In Section 4 we prove the equivalence of the two free boundary problems: the first one with
the Dirichlet constant boundary condition (5) considered in Section 2, and the second one with
the Neumann boundary condition (6) considered in Section 3.

In Section 5 we will consider the volumetric heat sources of the type given by expressions (56)
proposed by Scott [20] in thermal processes. In this particular case we can explicitly obtain
conditions (45) and (46) which guarantees the existence of a unique solution, as a function of
the parameters of the two problems, in order to have the corresponding exact similarity solution
in both phases. If we take d1 = d2 = 0 in β’s expressions (56) our solution (63) coincides with
Scott’s solution taking a null vapor mass flow rate.

2. Free boundary problem with temperature boundary condition

2.1. Solution of the free boundary problem with temperature boundary condition at x = 0

Applying the immobilization domain method (see Crank [8]), we are looking for solutions of
the type

Tj (x, t) = θj (y), j = 1,2, (10)

where the new independent spatial variable y is defined by

y = x
. (11)
s(t)
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Then, the condition (7) is transformed into

k1θ
′
1(1) − k2θ

′
2(1) = ρls(t)ṡ(t), (12)

and we must have necessarily that s(t)ṡ(t) = const. i.e.,

s(t) = 2a2λ
√

t, (13)

where the dimensionless parameter λ > 0 is unknown.
Next, we define

Rj (η) = θj

(
η

λ

)
, j = 1,2, η = λy, (14)

then the problem (1)–(5), (7)–(9) is equivalent to the following one:

R′′
2 (η) + 2ηR′

2(η) = −4l

c2
β2(η), 0 < η < λ; (15)

R′′
1 (η) + 2

a2
2

a2
1

ηR′
1(η) = −4a2

2 l

a2
1c1

β1

(
a2

a1
η

)
, η > λ; (16)

R1(λ) = R2(λ) = 0; (17)

k1R
′
1(λ) − k2R

′
2(λ) = 2ρlλa2

2; (18)

R1(+∞) = −C; (19)

R2(0) = B. (20)

After some elementary computations, from (15), (17) and (20) we obtain

R2(η) = B − (
B + ϕ2(λ)

)erf(η)

erf(λ)
+ ϕ2(η), 0 < η < λ,

ϕ2(η) = 2l
√

π

c2

η∫
0

β2(u) exp
(
u2)(erf(u) − erf(η)

)
du (21)

and, from (16), (17) and (19), we have

R1(η) = − (C + ϕ1(+∞))

erf c( a2
a1

λ)

2√
π

a2
a1

η∫
a2
a1

λ

exp
(−u2)du + ϕ1(η), η > λ,

ϕ1(η) = 2l
√

π

c1

a2
a1

η∫
a2
a1

λ

β1(u) exp
(
u2)[erf(u) − erf

(
a2

a1
η

)]
du (22)

where λ is the unknown coefficient which must verify the condition (18).
Furthermore, Eq. (18) for λ is equivalent to the following equation

f1(x,β1) = f2(x,β2), x > 0, (23)

where
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f1(x,β1) = F0(x) h1(x,β1), (24)

f2(x,β2) = Q

(
a2

a1
x

)
h2(x,β2) (25)

with

Q(x) = √
πx exp

(
x2)(1 − erf(x)

)
, x > 0, (26)

F0(x) = x erf(x) exp
(
x2), x > 0, (27)

h1(x,β1) = Ste1 − 2
√

π

+∞∫
a2
a1

x

erf c(u)β1(u) exp
(
u2)du, (28)

h2(x,β2) = Ste2√
π

− F(x,β2), x > 0, (29)

with

F(x,β2) = F0(x) − 2

x∫
0

erf(u)β2(u) exp
(
u2)du, x > 0, (30)

and

Ste1 = Cc1

l
, Ste2 = Bc2

l
(31)

are the Stefan numbers for phases j = 1 and j = 2, respectively.

Theorem 1. Equation (23) has a unique solution λ > 0. Moreover, the free boundary problem
with heat source terms (1)–(5), (7)–(9) has an explicit solution given by

T1(x, t) = −(C + ϕ1(+∞))

erf c( a2
a1

λ)

[
erf

(
x

2a1
√

t

)
− erf

(
a2

a1
λ

)]
+ ϕ1

(
x

2a2
√

t

)
,

for x > s(t), t > 0;

T2(x, t) = 2l
√

π

c2

x

2a2
√

t∫
0

β2(u) exp
(
u2)(erf(u) − erf

(
x

2a2
√

t

))
du

+ B − (
B + ϕ2(λ)

)erf( x

2a2
√

t
)

erf(λ)
for 0 < x < s(t), t > 0, (32)

where ϕ1(η) and ϕ2(η) are defined in (22), (21) respectively and the free boundary s(t) is given
by (13) where the coefficient λ is the unique solution of Eq. (23).

Proof. Taking into account Appendix A (Lemma A.1) we can prove that Eq. (23) has a unique
solution λ > 0. We invert relations (14), (10) and (11) in order to obtain an explicit solution of
problem (1)–(5), (7)–(9) with the source terms gj defined by (3). �
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Remark 1. If the initial temperature C = 0 and the solid phase source β1 = 0 then we have the
one-phase Stefan problem with a constant temperature B at the fixed face x = 0 which is the
problem considered in Menaldi, Tarzia [14]. The solution is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T (x, t) = T2(x, t) = B − (
B + ϕ2(λ)

)erf( x

2a2
√

t
)

erf(λ)

+ 2l
√

π

c2

x

2a2
√

t∫
0

β2(u) exp
(
u2)(erf(u) − erf

(
x

2a2
√

t

))
du,

0 < x < s(t), t > 0;
s(t) = 2λa2

√
t,

(33)

where λ is the unique solution of equation F(x,β2) = Ste2√
π

, x > 0.

Remark 2. In the particular case β1 = β2 = 0 we have the classic Neumann solution (see
Carslaw, Jaeger [6]).

2.2. Monotonicity properties

We denote by Tβ1β2,1(x, t), Tβ1β2,2(x, t) and sβ1β2(t) (i.e., λβ1β2) the solution to problem
(1)–(5), (7)–(9) for data β1 and β2. We will compare this solution with that corresponding to the
case β1 = 0 and β1 = β2 = 0.

We obtain a monotonicity property for the corresponding free-boundaries in Lemma 2 and for
temperatures in Theorem 3.

Lemma 2. If β1 � 0 and β2 � 0 then we have the following monotonicity properties:

(i) s0β2(t) � sβ1β2(t) � sβ10(t), t > 0,

(ii) s0β2(t) � s00(t) � sβ10(t), t > 0. (34)

Proof. In order to prove (34) it is sufficient to show the same inequality for the coefficient λ,
that is,

(i) λ0β2 � λβ1β2 � λβ10,

(ii) λ0β2 � λ00 � λβ10.
(35)

We can rewrite Eq. (23) for λ by the following

G1(x,β1) = G2(x,β2) (36)

where the real functions G1 and G2 are defined by

G1(x,β1) = F0(x)

[
Ste1 + Q

(
a2

a1
x

)
− 2

√
π

+∞∫
a2
a1

x

erf c(u)β1(u) exp
(
u2)du

]
, (37)

G2(x,β2) = Q

(
a2

a1
x

)[
Ste2√

π
+ 2

x∫
erf(u)β2(u) exp

(
u2)du

]
. (38)
0
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Taking into account β1 � 0 and β2 � 0 and by comparison of functions G1 and G2 we ob-
tain (35)(i), (ii). See Appendix A (Lemma A.2). �
Theorem 3. The solution to problem (1)–(5), (7)–(9) for data β1 � 0 and β2 � 0 satisfies the
following monotonicity properties:

(i) Tβ1β2,2(x, t) � Tβ10,2(x, t), 0 � x � sβ1β2(t), t > 0,

(ii) T00,2(x, t) � Tβ10,2(x, t), 0 � x � s00(t), t > 0,

(iii) T0β2,2(x, t) � T00,2(x, t), 0 � x � s0β2(t), t > 0,

(iv) T0β2,1(x, t) � T00,1(x, t), x > s00(t), t > 0,

(v) T0β2,2(x, t) � Tβ1β2,2(x, t), 0 � x � s0β2(t), t > 0,

(vi) T0β2,1(x, t) � Tβ1β2,1(x, t), x > sβ1β2(t), t > 0,

(vii) T00,1(x, t) � Tβ10,1(x, t), x > sβ10(t), t > 0,

(viii) Tβ1β2,1(x, t) � Tβ10,1(x, t), x > sβ10(t), t > 0. (39)

Proof. From maximum principle we obtain (39). We will only give the proof of the prop-
erty (vii).

Let u(x, t) = Tβ10,1(x, t) − T00,1(x, t). Function u satisfies the following conditions:

ut − a2
1uxx = l

c1t
β1

(
x

2a1
√

t

)
� 0, x > sβ10(t), t > 0,

u
(
sβ10(t), t

) = −T00,1
(
sβ10(t), t

)
� 0, t > 0,

u(x,0) = Tβ10,1(x,0) − T00,1(x,0) = −C − (−C) = 0, x > sβ10(t).

Then we have u(x, t) � 0 for x > sβ10(t), t > 0. �
These monotonicity properties can be interpreted by physical considerations and can be used

in order to obtain super and sub explicit solutions for general conditions by using the maximum
principle.

3. Solution of the free boundary problem with a heat flux condition on the fixed face x = 0

In this section we consider problem (1)–(5), (7)–(9), but condition (5) will be replaced by
condition (6) (see Rogers [18], Tarzia [21]). We can define the same transformations (10), (11)
and (14) as were done for the previous problem, and we obtain (15)–(19) and

R′
2(0) = −2q0

ρc2a2
. (40)

It easy to see that the free boundary must be of the type s(t) = 2a2μ
√

t where μ is a dimen-
sionless constant to be determined. The solution to problem (15)–(19) and (40) is given by

R1(η) = − (C + ϕ1(+∞))

erf c( a2 μ)

[
erf

(
a2

a1
η

)
− erf

(
a2

a1
μ

)]
+ ϕ3(η), η > μ,
a1
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ϕ3(η) = 2l
√

π

c1

a2
a1

η∫
a2
a1

μ

β1(u) exp
(
u2)[erf(u) − erf

(
a2

a1
η

)]
du (41)

and

R2(η) = q0
√

π

ρc2a2

(
erf(μ) − erf(η)

) + ϕ2(η) − ϕ2(μ), 0 < η < μ, (42)

where ϕ2 was defined in (21) and the unknown μ must satisfy the following equation

W(x,β1) = V (x,β2), x > 0, (43)

where

W(x,β1) = x exp(x2)

Q(a2
a1

x)

[
Ste1 − 2

√
π

+∞∫
a2
a1

x

erf c(u)β1(u) exp
(
u2)du

]

and

V (x,β2) = q0

ρla2
− x exp

(
x2) + 2

x∫
0

β2(u) exp
(
u2)du. (44)

Theorem 4.

(a) If condition

+∞∫
0

erf c(u)β1(u) exp
(
u2)du � Ste1

2
√

π
(45)

holds then Eq. (43) has a unique solution μ > 0 if and only if q0 satisfies the following
inequality:

q0 � 2a1ρl

[
Ste1

2
√

π
−

+∞∫
0

erf c(u)β1(u) exp
(
u2)du

]
. (46)

(b) If

+∞∫
0

erf c(u)β1(u) exp
(
u2)du >

Ste1

2
√

π
(47)

holds, then Eq. (43) has at least a solution μ > 0 ∀q0 > 0.
(c) Under the hypothesis assumed for βi (i = 1,2) given in the Introduction, the free boundary

problem with sources term (1)–(4), (6)–(9) has an explicit solution given by

T1(x, t) = −(C + ϕ3(+∞))

erf c( a2
a1

μ)

[
erf

(
x

2a1
√

t

)
− erf

(
a2

a1
μ

)]
+ ϕ3

(
x

2a2
√

t

)
for x > s(t), t > 0, (48)
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T2(x, t) = q0
√

π

ρc2a2

[
erf(μ) − erf

(
x

2a2
√

t

)]
+ ϕ2

(
x

2a2
√

t

)
− ϕ2(μ)

for 0 < x < s(t), t > 0, (49)

where ϕ3 and ϕ2 are defined in (41) and (21) respectively, the free boundary is given by

s(t) = 2a2μ
√

t,

and μ is the unique solution given in (a) or (b).

Proof. To prove (a) and (b) we use the definitions of the functions W and V , and Lemma A.2
(see Appendix A).

We invert relations (14), (10) and (11) in order to obtain (48)–(49). �
Remark 3. In the particular case β1 ≡ 0 and β2 � 0 we have that

∃!μ > 0 solution of Eq. (43) ⇐⇒ q0 >
Ck1

a1
√

π

which was the result obtained by Tarzia [21].

Remark 4. Taking into account Lemma A.2 (Appendix A) we can prove the same monotonicity
properties given in Section 2.2.

4. Equivalence of the two free boundary problems

We consider the solution T2(x, t) of problem (1)–(4), (6)–(9) given by (49). We com-
pute T2(0, t) and we have

T2(0, t) = q0
√

π

ρc2a2
erf(μ) − ϕ2(μ)

= q0
√

π

ρc2a2
erf(μ) − 2l

√
π

c2

μ∫
0

β2(z) exp
(
z2)(erf(z) − erf(μ)

)
dz

= B0(μ) (50)

which is constant in time.
If we replace B by B0(μ) in condition (5) and we solve problem (1)–(5), (7)–(9) we obtain

the similarity solutions

T ∗
1 (x, t) = −(C + ϕ1(+∞))

erf c( a2
a1

λ)

[
erf

(
x

2a1
√

t

)
− erf

(
a2

a1
λ

)]
+ ϕ1

(
x

2a2
√

t

)
,

for x > s(t), t > 0,

T ∗
2 (x, t) = B0(μ) − (

B0(μ) + ϕ2(λ)
)erf( x

2a2
√

t
)

erf(λ)

+ 2l
√

π

c2

x

2a2
√

t∫
0

β2(u) exp
(
u2)(erf(u) − erf

(
x

2a2
√

t

))
du,

for 0 < x < s(t), t > 0,
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where ϕ1(η) and ϕ2(η) are defined in (22), (21) respectively and s(t) = 2λa2
√

t is the free
boundary. The coefficient λ must be the solution of the following equation:

f1(x,β1) = Q

(
a2

a1
x

)[
Ste∗

2√
π

− F(x,β2)

]
, x > 0, Ste∗

2 = B0(μ)c2

l
. (51)

We remark that Eq. (51) is Eq. (23) where Ste2 has been replaced by Ste∗
2.

Theorem 5. Under the hypotheses (45) and (46) the solution μ of Eq. (43) is also solution of
Eq. (51), i.e., μ = λ.

Proof. We have:

μ is a solution of Eq. (51)

⇐⇒ f1(μ,β1) = Q

(
a2

a1
μ

)[
B0(μ)c2

l
√

π
− F(μ,β2)

]

⇐⇒ F0(μ)

(
Ste1 − 2

√
π

+∞∫
a2
a1

μ

erf c(z)β1(z) exp
(
z2)dz

)

= Q

(
a2

a1
μ

)
erf(μ)

(
q0

ρla2
+ 2

μ∫
0

β2(z) exp
(
z2)dz − μ exp

(
μ2))

⇐⇒ W(μ,β1) = V (μ,β2)

⇐⇒ μ is a solution of Eq. (43), i.e., μ = λ. �
Corollary 6. The coefficient λ a solution of Eq. (23) satisfies the following inequality:

B + ϕ2(λ)

erf(λ)
� la1

c2a2

[
Ste1 − 2

√
π

+∞∫
0

erf c(z)β1(z) exp
(
z2)dz

]
. (52)

Inequality (52) is a generalization of the inequality for the coefficient which characterizes
the free boundary s(t) of the Neumann solution for the particular case β1 = β2 = 0 obtained in
Tarzia [21], given by

erf(λ) <
Ba2c2

Ca1c1
= B

C

√
c2k2

c1k1
. (53)

5. Study of a particular case

We study the important particular case which has been considered in Scott [20] for
sublimation–dehydration with volumetric heating since it is of interest in microwave energy.
Taking into account the g’s internal source functions given in [20] and definition (3) we can
choose in our computation the following expressions for βi ’s function:

β1(x/2a1
√

t ) = exp
(−(x/2a1

√
t + d1)

2), (54)

β2(x/2a2
√

t ) = − exp
(−(x/2a2

√
t + d2)

2), d1, d2 ∈ R. (55)
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From (11) and (14) we can take from now on

β1(η) = exp
(−(η + d1)

2), β2(η) = − exp
(−(η + d2)

2), d1, d2 ∈ R. (56)

The functions ϕ1, ϕ2 and ϕ3 defined by (22), (21) and (41) respectively, are given by

ϕ1(η) = l
√

π

c1d1
exp

(−d2
1

)[
exp

(
−2

a2

a1
λd1

)(
erf

(
a2

a1
λ

)
− erf

(
a2

a1
η

))

+ exp
(
d2

1

)(
erf

(
a2

a1
η + d1

)
− erf

(
a2

a1
λ + d1

))]
, if d1 
= 0, (57)

ϕ1(η) = 2l
√

π

c1

[
a2

a1
λ

(
erf

(
a2

a1
η

)
− erf

(
a2

a1
λ

))

+ 1√
π

(
exp

(
−

(
a2

a1
η

)2)
− exp

(
−

(
a2

a1
λ

)2))]
, if d1 = 0, (58)

ϕ2(η) = −l
√

π

c2d2

[
erf(η + d2) − erf(d2) − erf(η) exp

(−d2
2

)]
, if d2 
= 0, (59)

ϕ2(η) = 2l

c2

[
1 − exp

(−η2)], if d2 = 0, (60)

ϕ3(η) = l
√

π

c1d1
exp

(−d2
1

)[
exp

(
−2

a2

a1
μd1

)(
erf

(
a2

a1
μ

)
− erf

(
a2

a1
η

))

+ exp
(
d2

1

)(
erf

(
a2

a1
η + d1

)
− erf

(
a2

a1
μ + d1

))]
, if d1 
= 0, (61)

and

ϕ3(η) = 2l
√

π

c1

[
a2

a1
μ

(
erf

(
a2

a1
η

)
− erf

(
a2

a1
μ

))

+ 1√
π

(
exp

(
−

(
a2

a1
η

)2)
− exp

(
−

(
a2

a1
μ

)2))]
, if d1 = 0. (62)

Theorem 7. The explicit solution to the free boundary problem with sources term (1)–(5), (7)–(9)
is given by

T1(x, t) = −(C + ϕ1(+∞))

erf c( a2
a1

λ)

[
erf

(
x

2a1
√

t

)
− erf

(
a2

a1
λ

)]
+ ϕ1

(
x

2a2
√

t

)
,

for x > s(t), t > 0;

T2(x, t) = ϕ2

(
x

2a2
√

t

)
+ B − (

B + ϕ2(λ)
)erf( x

2a2
√

t
)

erf(λ)
,

for 0 < x < s(t), t > 0, (63)

where ϕ1 and ϕ2 are given by (57)–(60), and

s(t) = 2λa2
√

t (64)

is the free boundary with λ the unique solution of Eq. (23).

Proof. Taking into account expressions (57)–(60) we obtain the explicit expressions (63) for the
temperatures T1 and T2. �
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Theorem 8.

(a) Inequality (45) is equivalent to

Ste1 � 2, for d1 � 0, Ste1 � 2
√

πP (d1), for d1 < 0, (65)

where

P(x) = exp(−x2) − erf c(x)

2x
. (66)

(b) Inequality (46) is equivalent to

q0 � a1ρl

[
Ste1√

π
− 1

d1

(
exp

(−d2
1

) − erf c(d1)
)]

if d1 
= 0, (67)

q0 � a1ρl√
π

[Ste1 − 2] if d1 = 0. (68)

(c) Inequality (52) is equivalent to

B − l
√

π

c2d2
(erf(λ + d2) − erf(d2) − erf(λ) exp(−d2

2 ))

erf(λ)

� la1

c2a2

[
Ste1 −

√
π

d1

(
exp

(−d2
1

) − erf c(d1)
)]

if d1 
= 0, (69)

and

B − 2l
c2

[1 − exp(−λ2)]
erf(λ)

� la1

c2a2
[Ste1 − 2] if d1 = 0. (70)

(d) The free boundary problem with sources term (1)–(4), (6)–(9) has an explicit solution given
by

T1(x, t) = −(C + ϕ3(+∞))

erf c( a2
a1

μ)

[
erf

(
x

2a1
√

t

)
− erf

(
a2

a1
μ

)]
+ ϕ3

(
x

2a2
√

t

)
for x > s(t), t > 0; (71)

T2(x, t) = q0
√

π

ρc2a2

[
erf(μ) − erf

(
x

2a2
√

t

)]
+ ϕ2

(
x

2a2
√

t

)
− ϕ2(μ)

for 0 < x < s(t), t > 0, (72)

where ϕ3 and ϕ2 are defined in (61)–(62) and (59)–(60) respectively, the free boundary is
given by

s(t) = 2a2μ
√

t, (73)

and μ is the unique solution of Eq. (43).

Proof. (a) We have

+∞∫
erf c(u)β1(u) exp

(
u2)du =

⎧⎨
⎩P(d1) = exp(−d2

1 )−erf c(d1)

2d1
, if d1 
= 0,

1√
π
, if d1 = 0,

(74)
0
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where the function P(x) satisfies the following properties:

P(0) = 1√
π

, P (+∞) = 0, P (−∞) = 0, P (x) > 0 ∀x.

Then we obtain that condition (45) is equivalent to

2 � Ste1, if d1 = 0 or 2
√

πP (d1) � Ste1, if d1 
= 0.

(b) To obtain (67) we replace expression (74) in (46).
(c) If we replace ϕ2(λ) for expressions (59) or (60) in (52) we obtain (69) or (70) respectively.
(d) Taking into account expressions (59)–(62) we obtain explicit expressions (71) and (72) for

the temperatures T1 and T2. �
Remark 5. If we take d1 = d2 = 0 in (56) solution (63) was given by Scott [20] by taking

Td(x, t) = Ts − Tv

B
T2(x, t) + Tv and Tf (x, t) = Tv − Ti

C
T1(x, t) + Tv

where Ts, Tv and Td were defined in Scott [20].

6. Conclusions

As regards the two-phase Stefan problem with general source terms of a similarity type in
both liquid and solid phases for a semi-infinite phase-change material we have arrived at the
following conclusions:

(1) An explicit solution for a constant temperature condition B > 0 at the fixed face x = 0 for
any data has been obtained.

(2) An explicit solution for an assumed heat flux of the form − q0√
t

(q0 > 0) has been obtained
for data verifying restrictions (45) and (46).

(3) The equivalence of the two previous free boundary problems has also been proved and an in-
equality (52) for the coefficient λ which characterizes the phase change position is obtained.

(4) An explicit solution for the particular case (56) where functions βj (j = 1,2) are of an
exponential type which are of interest in microwave energy is obtained for any temperature
boundary condition B > 0.

(5) An explicit solution for the particular case (56) is obtained when a heat flux condition of
the type (6) is imposed on x = 0; this kind of solution there exists when the parameter q0
satisfies the inequalities (67) and (68); this is new with respect to Scott [20].
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Appendix A. Mathematical properties of some useful functions

Lemma A.1.

(A) Functions Q(x), F0(x) and F(x,β2) satisfy the following properties:
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(i) Q(0) = 0, Q(+∞) = 1, Q′(x) > 0, ∀x > 0, Q′(0) = √
π.

(ii) F0(0) = 0, F0(+∞) = +∞, F ′
0(x) > 0, ∀x > 0.

(iii) F (0, β2) = 0, F (+∞, β2) = +∞,
∂F

∂x
(x,β2) > 0, ∀x > 0. (A.1)

(B) Functions hj (x,βj ) (j = 1,2) satisfy the following properties:

(i) h1(0+, β1) = Ste1 − 2
√

π

+∞∫
0

erf c(u)β1(u) exp
(
u2)du;

(ii) h1(+∞, β1) = Ste1;

(iii)
∂h1

∂x
(x,β1) = 2

√
π

a2

a1
erf c

(
a2

a1
x

)
exp

(
a2

a1
x

)2

β1

(
a2

a1
x

)
> 0, ∀x > 0;

(iv) if

+∞∫
0

erf c(u)β1(u) exp
(
u2)du � Ste1

2
√

π
(A.2)

then h1(x,β1) > 0, ∀x > 0;
(v) if

+∞∫
0

erf c(u)β1(u) exp
(
u2)du >

Ste1

2
√

π
(A.3)

then there exists a unique ξ1 > 0, such that h1(ξ1, β1) = 0 and h1(x,β1) is negative
in (0, ξ1), is positive in (ξ1,+∞);

(vi) h2(0+, β2) = Ste2√
π

;

(vii) h2(+∞, β2) = −∞;

(viii)
∂h2

∂x
(x,β2) = −

{
2x√
π

+ exp
(
x2

)
erf(x)

[
1 + 2x2 − 2β2(x)

]}
< 0;

(ix) there exist a unique ξ2 > 0 such that h2(ξ2, β2) = 0.
(C) (a) Function f1(x,β1), satisfies the following properties:

(i) f1(0+, β1) = 0;
(ii) f1(+∞, β1) = +∞;

(iii) if condition (A.2) is verified then f1(x,β1) > 0 ∀x > 0,

∂f1

∂x
(x,β1) > 0 and

∂f1

∂x
(0+, β1) = 0+;

(iv) if condition (A.3) is verified then f1(ξ1, β1) = 0 and f1(x,β1) is negative in (0, ξ1),
and is positive in (ξ1,+∞); then there exists x1 ∈ (0, ξ1) such that ∂f1

∂x
(x1, β1) = 0.

Moreover we have ∂f1
∂x

(x,β1) > 0 ∀x > ξ1.
(b) Function f2(x,β2) satisfies the following properties:

(i) f2(0+, β2) = 0;
(ii) f2(+∞, β2) = −∞;
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(iii) f2(ξ2, β2) = 0;

(iv)
∂f2

∂x
(x,β2) = a2

a1
Q′

(
a2

a1
x

)
h2(x,β2) + Q

(
a2

a1
x

)
∂h2

∂x
(x,β2);

(v)
∂f2

∂x
(0+, β2) = a2

a1
Ste2 > 0;

(vi) there exists x2 ∈ (0, ξ2) such that ∂f2
∂x

(x2, β2) = 0;

(vii) ∂f2
∂x

(x,β2) < 0, ∀x > ξ2.

Proof. (A) The properties for F0 and Q are easy to check and the function F appears for the
one-phase case which was considered in Menaldi, Tarzia [14].

(B) It easily follows from (A) and definitions (28)–(29).
(C) We use the definitions of the corresponding real functions and (A) and (B). We remark that

in (a)(iv) we have f1(x,β1) < 0 ∀x ∈ (0, ξ1) and in (b)(vi) we have f2(x,β2) > 0 in (0, ξ2). �
Lemma A.2. Function G1 has the following properties:

(i) G1(0, β1) = 0,
(ii) G1(+∞, β1) = +∞,

(iii) if condition (A.2) is verified then G1(x,β1) > 0, ∀x > 0,
(iv) if condition (A.3) is verified then there exists a unique ξ > 0 such that G1(ξ,β1) = 0 and

G1(x,β1) is negative in (0, ξ), G1 is positive in (ξ,+∞),
(v) G1(0,0) = 0,

(vi) G1(+∞,0) = +∞,

(vii)
∂G1

∂x
(x,0) > 0, ∀x > 0, and

∂G1

∂x
(0,0) = 0.

Function G2 has the following properties:

(i) G2(0, β2) = 0,
(ii) G2(0,0) = 0,

(iii) G2(+∞,0) = Ste2√
π

,

(iv) G2(+∞, β2) = Ste2√
π

+ 2

+∞∫
0

erf(u)β2(u) exp
(
u2)du,

(v) ∂G2
∂x

(x,0) > 0 ∀x > 0,

(vi) G2(x,β2) � G2(x,0) ∀x � 0.

Lemma A.3.

(a) Function W(x,β1) satisfies the following properties:

(i) W(0, β1) = a1

a2
√

π

[
Ste1 − 2

√
π

+∞∫
erf c(u)β1(u) exp

(
u2)du

]
,

0
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(ii) W(+∞, β1) = +∞,
(iii) W(x,β1) � W(x,0), ∀x > 0, β1 > 0,
(iv) if condition (A.2) is verified then W(0, β1) � 0 and

∂W

∂x
(x,β1) > 0, ∀x > 0,

(v) if condition (A.3) is verified then W(0, β1) < 0.
(b) Function V (x,β2) satisfies the following properties:

(i) V (0, β2) = q0
ρla2

,

(ii) V (+∞, β2) = −∞,

(iii) ∂V
∂x

(x,β2) < 0, ∀x > 0,

(iv) V (x,β2) � V (x,0), ∀x > 0, β2 < 0.

Proof. In order to prove (a)(iii) we use that Q′(x) is given by Q′(x) = Q(x)(1+2x2)−2x2

x
.

We demonstrate the other properties by elementary computations. �
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INTRODUCTION

The convective method of drying is used most commonly in
industrial technology of drying. In this method, the heat necessary for
moisture evaporation is supplied convectively by hot air or superheated
steam through the material surface. In such a case, the gradient of
temperature is pointed outwards and the heat flux is pointed into the
material. So, the thermodiffusional mass flow is in the opposite direction
to the diffusional flux of moisture. As a result, the distribution of
moisture can achieve a strongly nonlinear mapping, and this may be
a reason for the generation of strong shrinkage stresses. Therefore, one
should look for another means of heat supply, namely, such a means
by which the diffusional and thermodiffusional fluxes of moisture are
pointed in the same direction. One of several possible ways is to apply
the microwave generation of heat inside the material.

The main aim of this article is to show that heat supplied
volumetrically to the dried material causes the diffusional and thermo-
diffusional flow of moisture in the same direction, and thus, more
uniform distribution of the moisture content in the material and smaller
values of the shrinkage stresses. Our attention is concentrated on the
microwave drying, by which the heat is generated volumetrically inside
the dried material.

Microwave drying has been studied recently by several authors: Chen
et al.,[1] Constant et al.,[2] Feng et al.,[3] Perre and Turner,[7] Ratanadecho
et al.,[8–10] Sanga et al.,[12] Turner and Illic,[13] Zhang and Mujumdar,[16]

Zielonka et al.,[17] among others. However, little attention has been
devoted to the analysis of mechanical effects arising in materials under
this kind of drying, and in particular to the drying induced stresses.
Generally, one can state that the volumetrically generated heat in dried
materials, as it takes place in microwave drying, gives better mechanical
quality products than by convective heat supply through the boundary
surface, mainly due to substantial reduction of drying induced stresses.

The mechanistic drying theory presented in Kowalski[5] forms the
basis for the present analysis. The governing equations for heat and mass
transfer, adapted to a cylindrically shaped sample, are solved numerically
with the finite element method (Rybicki[11] and Wait and Mitchell[14]).
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The temperature, moisture, and stress distributions at different instances
for both microwave and convective drying are presented.

GOVERNING EQUATIONS FOR

HEAT AND MASS TRANSFER

The general mechanistic drying theory used here for analysis of the
mechanical effects in dried materials was developed systematically on
the basis of balance equations for mass, momentum, energy, and entropy,
as well as on the statements of the conservation laws and the principles of
irreversible thermodynamics (Kowalski[5]). Adopting this theory to the
present considerations, we made the following assumptions:

– The dried body is assumed to be an isotropic capillary-porous
solid of density �s.

– The pores in the body are filled with liquid (l )–vapor (v) mixture
of partial mass density �m¼ �lþ �v� �l, i.e., saturated body.

– The moisture flux inside the material is proportional to the
gradient of moisture potential, and that on the boundary surface
is proportional to the difference of chemical potentials of vapor at
the boundary and far from the boundary. Diffusivity is assumed
constant.

– The heat flux includes both conduction and transport of heat by
moisture flux.

– The heat and mass transfer includes coupling effects; however,
the influence of body volume deformation on heat and mass
transfer is neglected.

– The dried material is elastic.
– Gravity forces are neglected.
– The microwave energy absorption term is constructed as the

local microwave power multiplied by the water content and an
exponentially formulated attenuation term dependent on the
distance in microwave propagation and the attenuation factor.

– The boundary value problem is two-dimensional; the analyzed
functions depend on coordinates r, z (radius and height of the
cylinder), and time t.

The governing equations reduced to solve the axial-symmetry
boundary value problem include: the system of equations describing
heat and mass transfer, the equations of equilibrium of internal force,
and the physical relations.
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Let X¼ �m/�s denotes the ratio of moisture content referred to the
mass of a dry body, and W is the mass flux of the moisture. The mass
balance for the moisture reads (Kowalski[5])

�s _XX ¼ �divW ð1Þ

Based on the above-mentioned reference, we write the following
(reduced) form of energy balance

�sT _SS ¼ �divðq� smT WÞ þ < ð2Þ

where S denotes total entropy referred to the mass of a dry body, q is the
heat flux, sm is the entropy of moisture, T is the temperature of the body,
and < is the internal source of heat (radiation). This equation points out
that the entropy alteration is due to heat flux conducted and heat
transported by the mass flux, as well as by the internal heat generation
(radiation).

The following mass and heat fluxes resulted from the thermodynamic
inequality (see Ref.[5])

W ¼ ��mgrad�, �m � 0 ð3Þ

q ¼ ��TgradT � smT W , �T � 0 ð4Þ

In these relationships � is the generalized chemical potential of the
moisture, �m is termed the mobility coefficient dependent on the surface
tension and viscosity of the moisture, as well as on the permeability and
porosity of the dried body, while �T is the effective thermal conductivity,
being volume averaged from conductivity coefficients of solid, liquid, and
vapor phases. In Eq. (4), the sign ‘‘minus’’ between the conducted and
convected heat flux holds when the moisture flux W flows outwards
the body.

The generalized chemical potential � and the entropy S are functions
of the body thermodynamic state, defined by the temperature T,
volumetric strain ", and moisture content X. In further considerations,
we neglect the influence of the volumetric strain gradient on moisture
transport, and the volumetric strain rate on the temperature alteration.
So, after substituting mass and heat fluxes of Eqs. (3) and (4) into the
balances of mass and energy of Eqs. (1) and (2), we obtain the following
system of differential equations describing the heat and mass transfer

�s _XX ¼ �mðcTr
2T þ cXr

2XÞ ð5Þ

�sðcv _TT þ l _XXÞ ¼ �Tr
2T þ < with r2 ¼

@2

@r2
þ
1

r

@

@r
þ

@2

@z2
ð6Þ
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where r
2 is the Laplace operator in cylindrical coordinates with axial

symmetry, cT and cX are the thermodifusional and diffusional coefficients
of moisture transport, cv is the total volume averaged specific heat
referred to unit mass of a dry body, and l¼ (sv� sl)T is the latent heat of
evaporation, being the difference of vapor and liquid entropy multiplied
by temperature.

The internal source of heat < is zero for the convective drying. In the
case of microwave drying, it expresses the rate of microwave energy
absorbed per unit volume, and is constructed as follows

< ¼ <0
X

X0
exp½��ðR� rÞ� ð7Þ

where X is the moisture content at time t and radius r, X0 is the moisture
content at time t¼ 0 and radius r, � is the attenuation factor in the
direction of microwave propagation distance (R� r), R is the cylinder
radius, and <0 is the experimentally estimated average microwave power.

Using our 8-modal microwave chamber dryer type WS110 firm
PLAZMATRONIKA of maximum microwave power 600W, we have
estimated the average microwave power on the cylindrical kaolin sample
using the formula

<0 ¼
2

R
�T ðTn � TaÞ þ l

�m

A�t

� �
ð8Þ

In this formula: �T denotes the coefficient of convective heat
exchange, Tn is the sample surface temperature (adjusted automatically
by the microwave dryer), Ta is the temperature of the ambient medium,
l is the latent heat of water evaporation, �m is the loss of a sample weight
per time increment �t, and A is the area of evaporation.

Figure 1 presents the geometry of the sample under consideration.
The undersurface of the cylindrically shaped sample is placed on the
impermeable plate, whereas the other surfaces are open for moisture
release. The sample is assumed to be enough long so that the supply of
microwave power takes place mainly through the lateral surface of the
cylinder (see Eq. (7)).

The following boundary conditions for mass and heat transfer hold
for both convective and microwave drying. These for mass transfer,
expressed with the help of moisture potential, are as follows:

@�

@z
z¼0j ¼ 0, ��m

@�

@z
z¼Hj ¼ �mð�jz¼H � �aÞ ð9aÞ

@�

@r
r¼0j ¼ 0, ��m

@�

@z
z¼Rj ¼ �mð�jz¼R � �aÞ ð9bÞ
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where �m denotes the coefficient of convective mass transfer, and �a is

the chemical potential of vapor in the ambient medium. The conditions

on the left express impermeability (the upper) and symmetry (the

lower one), while these on the right, represent the convective exchange

of mass.
The boundary conditions for heat transfer are similar in form to

these for mass transfer, namely

��T
@T

@z
z¼0j ¼ �T ðT jz¼0 � TaÞ,

��T
@T

@z
z¼Hj ¼ �T ðT jz¼H � TaÞ � l�mð�jz¼H � �aÞ ð10aÞ

@T

@r
r¼0j ¼ 0,��T

@T

@z
z¼Rj

¼ �T ðT jz¼R � TaÞ � l�mð�jz¼R � �aÞ ð10bÞ

where constant value of the coefficient of convective heat exchange �T
is assumed.

Figure 1. Geometry of the dried sample: (a) convective drying, (b) microwave

drying.
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The upper condition on the left expresses the convective exchange of
heat on the lower moisture-impermeable plate, the lower on the left is the
symmetry condition. The conditions on the right describe the convective
heat exchange with taking into account the heat escaping with the vapor.

The initial conditions express the values of moisture content and
temperature at the beginning of drying, that is

Xðr, z, tÞjt¼0 ¼ X0 ¼ const and Tðr, z, tÞjt¼0 ¼ T0 ¼ const ð11Þ

The numerical method used for solution of this initial-boundary
value problem was the Galerkin discretization method (finite element
method) for spatial derivatives, and the finite difference method for
time derivatives (see Kowalski and Rybicki,[6] Rybicki,[11] Wait and
Mitchell[14]).

NUMERICAL PREDCTION OF TEMPERATURE

AND MOISTURE CONTENT

In numerical calculations the gradient of moisture potential inside
the material was replaced by the gradients of temperature and moisture
content, that is

grad� ¼ cTgradT þ cXgradX ð12Þ

The moisture potential on the external boundary surface was
assumed to be equal to the vapor moisture potential at the boundary, i.e.,

�jr¼R ¼ �ðpvjr¼R,T jr¼RÞ ¼ �ðp, xjr¼R,T jr¼RÞ ð13Þ

where pv|r¼R¼ px|r¼R denotes the vapor partial pressure and x|r¼R is
the molar vapor content in air at the boundary, and p is the total pressure
of air.

Developing the moisture (vapor) potentials in air in Taylor’s series
one can replace the difference in moisture potentials on the right hand
side of boundary conditions (9a) and (9b) by the following expression

�mð�jB � �aÞ ffi �xðxjB � xaÞ þ �T ðT jB � TaÞ ð14Þ

where �x and �T can be termed as the diffusion and thermodiffusion
coefficients of vapor in the surrounding air, and |B means the boundary
surface.

All numerical calculations, for both convective and microwave
drying, refer to the kaolin cylinder of radius R¼ 0.025m and height
H¼ 0.1m. The initial moisture content of the cylinder was assumed to
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be X0¼ 28% (dry basis state), and the initial temperature T0¼ 15�C. The
following data of material coefficients suitable for kaolin material were

taken for numerical calculus

�m ¼ 6:04	10�8ðkg sm�3Þ �T ¼ 1:7	10�3ðWm�1 K�1Þ

cX ¼ 3:06 ðJ kg�1
Þ cT ¼ 0:52 ðJ kg�1 K�1Þ

�x ¼ 9:64	10�6ðkgm�2 sÞ �T ¼ 40 ðkgm2 s�1 K�1Þ

cv ¼ 23:3	105 ðJ kg�1K�1Þ l ¼ 2000 ðkJ kg�1
Þ

�s ¼ 2600 ðkgm�3Þ a ¼ 150 ðm�1Þ

�m ¼ 8:64	10�5ðkg sm�4Þ <0 ¼ 180 ðWm�3Þ

Temperature Ta of air in the drying chamber (convective drying) was
fixed at 50�C, and the relative humidity was ’¼ 10%. Under these
conditions the wet bulb temperature reached about 35�C. In our

microwave chamber dryer, on the other hand, it is possible to fix
automatically the temperature of the upper cylinder surface, so it was
fixed to be 35�C. The temperature of air in this chamber was c.a. 20�C,

and the relative humidity ’¼ 40%.
Figure 2 illustrates the temperature distribution in the cylindrical

samples by convective drying and by microwave drying.
The plots present the isolines of constant temperatures of given

values. Note that the bottom base of the cylinder is placed on a plate

impermeable to moisture flow but conductive for heat. The upper base
and the lateral surfaces of the cylinder are open, so the heat and mass
exchange with the ambient air is possible through these surfaces.

In the case of convective drying, the cylinder is assumed to be

continuously heated from the hot ambient air, however, due to
evaporation of moisture and escaping of vapor from the upper and
lateral surfaces, the greatest temperature occurs in the middle of the

cylinder, particularly at its bottom base (Fig. 2a). The calculations refer
to the stable drying conditions, so that the distribution of temperature is
also stable, although nonuniformly distributed through the cylinder, due

to heating from below through the impermeable for moisture plate.
A quite different distribution of temperature was obtained for

microwave drying of the cylinder. In this case the heat was generated
inside the material, proportionally to the local amount of moisture. The

propagation of microwaves was assumed to proceed in radial direction
only and with exponential attenuation term increasing with a distance. It
is obvious that the temperature of the ambient air in microwave drying is

lower than the temperature of the drying object.
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Note that the escape of heat through the upper and the lateral
surfaces of the cylinder during microwave drying is doubled, namely, due
to convection and due to transport with vapor. Because there is no vapor
escape through the bottom base of the cylinder, the temperature at this
base is greater than at the upper one. Due to attenuation of microwaves
with distance and proportionality of the heat generation to the magnitude
of local moisture content, the highest temperature appears not in the
center of the cylinder r¼ 0, but is in some other cross-section 0< r<R.
Similarly, because of asymmetry of cylinder cooling on its upper and
bottom surfaces, the highest temperature is not in the middle of the
cylinder height z¼H/2, but in some other plane 0< z<H/2.

Figure 3 presents the moisture content distribution in the cylinder
during convective drying after 60, 120, and 180min of a drying time.

This figure illustrates clearly how the dry zone moves towards the
interior of the cylinder in the course of drying. The driest area is located
at the upper corner of the cylinder, and the least dry area somewhere in
the middle of the cylinder. The upper surface is open for the moisture
exchange, similar as the lateral one. On the other hand, the bottom
surface is closed to moisture transfer, but it is warmer than the other
surfaces (see Fig. 2a). Therefore, the removal of moisture in lateral
direction is greater than in other places, and the moisture content at this
surface is a bit lower than in a slightly higher cross-section of the cylinder
(see Fig. 3c).

Figure 2. Distribution of temperature in the cylindrical samples: (a) 60-min

convective drying, (b) 60-min microwave drying, (c) 180-min microwave drying.

Convective and Microwave Drying of Saturated Porous Materials 1181



ORDER                        REPRINTS

Figure 4 presents the distribution of moisture content distribution in
the cylinder by microwave drying after 60, 120, and 180min of a
drying time.

The distribution of moisture in this kind of drying is quite similar to
that by convective drying, however, is more uniform. This is evidenced by

Figure 3. Distribution of moisture content (in % of initial moisture) in the

cylindrical sample by convective drying: (a) 60min, (b) 120min, (c) 180min.

Figure 4. Distribution of moisture content (in % of initial moisture) in the

cylindrical sample by microwave drying: (a) 60min, (b) 120min, (c) 180min.
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the fact that the isolines are less dense than in convective drying. Another
difference is visible at the bottom of the cylinder. In this place the
moisture removal is the slowest by microwave drying. This was not the
case of convective drying. Besides, the drying rate is greater in microwave
than in convective drying.

DRYING INDUCED STRESSES

Having determined the distributions of temperature and moisture
content, one can calculate the distribution of stresses. The stresses have to
satisfy the equilibrium equations, which in the axial symmetry take the
form

@�rr
@r

þ
@�rz
@z

þ
�rr � �’’

r
¼ 0 ð15aÞ

@�rz
@r

þ
�rz
r
þ
@�zz
@z

¼ 0 ð15bÞ

The stresses are related to the strains as follows:

�rr ¼ 2M"rr þ A"� 3K"ðTX Þ ð16aÞ

�’’ ¼ 2M"’’ þ A"� 3K"ðTX Þ ð16bÞ

�zz ¼ 2M"zz þ A"� 3K"ðTX Þ ð16cÞ

�zr ¼ 2M"zr ð16dÞ

where M and A are the coefficients equivalent to Lame constants in the
theory of elasticity, 3K¼ 2Mþ 3A, and

"ðTXÞ ¼ �ðTÞðT � T0Þ þ �ðXÞðX � X0Þ ð17Þ

denotes the thermal-moist strain, with �(T ) and �(X ) being the coefficients
of thermal and moist expansion (or shrinkage).

The geometrical relations for axial symmetry are:

"rr ¼
@ur
@r

, "’’ ¼
ur

r
, "zz ¼

@uz
@z

, "rz ¼
1

2

@ur
@z

þ
@uz
@r

� �
ð18Þ

with

" ¼ "rr þ "’’ þ "zz ¼
1

r

@

@r
ðrurÞ þ

@uz
@z

¼ 0 ð19Þ
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being the volumetric strain, and ur, uz denote the displacements in radial
and axial directions, respectively.

Substituting the physical relations from Eq. (16a) to Eq. (16b) into
the equations of force equilibrium (15a) and (15b), we obtain the system
of two coupled equations for determination of displacements ur and uz

Mr2ur þ
@

@r
ðM þ AÞ"� 3K"ðTXÞ
� �

¼ M
ur

r2
ð20aÞ

Mr2uz þ
@

@z
ðM þ AÞ"� 3K"ðTXÞ
� �

¼ 0 ð20bÞ

where r
2 denotes the Laplace operator in cylindrical coordinates (see

Eq. (6)).
In order to solve this system of equations explicitly, the following

boundary conditions are assumed:

– Zero-valued stresses at the free surfaces of the cylinder, that is

�rr r¼Rj ¼ 0, �zz z¼Hj ¼ 0 ð21aÞ

– Zero-valued displacements at the bottom and in the center of the
cylinder, that is

ur r¼0j ¼ 0, uz z¼0j ¼ 0 ð21bÞ

The stresses arise when the temperature and/or moisture content are
distributed nonuniformly. We have assumed uniform distribution of
temperature and moisture content at the beginning of a drying process,
and this means the stress-free initial state of the cylinder.

The finite element procedure of Galerkin type was applied to
numerical calculus of displacements, strains, and stresses. In our con-
siderations we are interested mostly in comparison of stresses generated
by convective and microwave drying. This issue will be illustrated on the
circumferential stresses �’’.

Figure 5 visualizes the stress distribution in the longitudinal plane
(r, z) of the cylinder. The lines perform the circumferential stresses of the
same value (stress-isolines).

It is seen from this figure that stresses are tensional at the surfaces
where the removal of moisture takes place and the shrinkage of dried
material occurs. As the cylinder as a whole has to be in equilibrium, the
tensional stresses have to be balanced by the compressive stresses in the
core of the cylinder. The neutral (zero-valued) line separates the areas of
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tensional and compressive stresses. The most complicated and of greatest

values state of stress appears in the upper corner of the cylinder. The

material placed in this corner is tensed simultaneously in r (radial) and z

(longitudinal) directions. It is obvious that a destruction of the material

will proceed in this place first.
Mapping of the stress distribution is quite similar in the cylinders

dried convectively and by microwaves. However, microwave drying

generates weaker stresses. This is clearly visible in Fig. 6, where

distribution of stresses along the cylinder radius in the middle height of

the cylinder (z¼H/2) at 120min drying time is presented.
The fact that microwave drying generates smaller value stresses is

even more visible in Fig. 7, where the evolution of circumferential stresses

in time at the cylinder surface (r¼R) and in its center (r¼ 0) for z¼H/2

is presented.
The weaker stresses in microwave drying follow mainly from more

uniform distribution of the moisture content (see Figs. 3 and 4). Now, we

can conclude that the volumetrically supplied heat in microwave drying

causes the diffusional and thermodiffusional fluxes of moisture to flow

in the same direction, and this results in more uniform distribution of

moisture content and smaller value stresses. This is not the case of

Figure 5. Isolines of circumferential stresses in the longitudinal section of the

cylinder sample at 120min drying time: (a) convective drying, (b) microwave

drying.
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convective drying, where the diffusional and thermodiffusional fluxes
have opposite directions.

FINAL REMARKS

The main goal of this article was to demonstrate that the
volumetrically supplied heat to the dried material results in more uniform
distribution of the moisture content during drying, and thus also in smaller
value drying-induced stresses. By convective drying, particularly when
the drying proceeds in high temperatures and small relative humidity of
the drying medium, the thermodiffusional flux of moisture blockades the
outflow of moisture due to diffusion, mainly at the boundary, and this
causes strongly nonuniform distribution of the moisture content than in
microwave drying. Therefore, the convective drying generates larger
stresses (Hasatani et al.,[4] Kowalski and Rybicki,[6] Zagrouba et al.[15]).

Figure 7. Evolution of circumferential stresses in time for z¼H/2: (a) for r¼ 0,

(b) for r¼R. (View this art in color at www.dekker.com.)

Figure 6. Distribution of circumferential stresses along cylinder radius for

z¼H/2 at 120min drying time. (View this art in color at www.dekker.com.)
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When the weaker stresses are generated during drying a better quality
dry product is obtained from the mechanical standpoint. In this context,
microwave drying has the predominance over the convective drying.

NOMENCLATURE

Symbols

A Area of evaporation (m2)
A Bulk elasticity constant (MPa)
cT Thermodiffusion coefficient (m2/K s2)
cX Diffusion coefficient (m2/s2)
cv Specific heat per unit mass of dry body (J/kgK)
H Height of the cylinder (m)
K Volumetric modulus of elasticity (MPa)
l Latent heat of evaporation (J/kg)
M Shear elasticity constant (MPa)
q Heat flux (W/m2)
r Radial coordinate (m)
R Radius of the cylinder (m)
S Total entropy (J/kgK)
sm Entropy of moisture (J/kgK)
T Temperature (K)
t Time (s)
ur, uz Displacements in radial and axial directions (m)
W Moisture flux (kg/m2 s)
X Moisture content (dry basis) (L)
x Molar vapor content in air (L)
z Axial coordinate (m)

Greek Letters

� Attenuation factor (L/m)
�m Coefficient of the convective mass exchange (kg s/m4)
�T Coefficient of the convective heat exchange (W/m2K)
�T Coefficient of thermodiffusion (kg/m2K s2)
�x Coefficient of diffusion (kg/m2 s2)
"ij Strain tensor (L)
�(T ) Coefficient thermal expansion (L/K)
�(X) Coefficient moist expansion (L)
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�m Mobility coefficient (kg s/m3)
�T Effective thermal conductivity (W/mK)
� Moisture potential (J/kg)

Internal source of heat (W/m3)
�ij Stress tensor (MPa)
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Abstract

A two-phase Stefan problem with heat source terms of a general similarity type in both liquid and
solid phases for a semi-infinite phase-change material is studied. We assume the initial temperature is a
negative constant and we consider two different boundary conditions at the fixed face x = 0, a constant
temperature or a heat flux of the form −q0/

√
t (q0 > 0). The internal heat source functions are given by

gj (x, t) = ρl
t βj ( x

2aj

√
t
) (j = 1 solid phase; j = 2 liquid phase) where βj = βj (η) are functions with ap-

propriate regularity properties, ρ is the mass density, l is the fusion latent heat by unit of mass, a2
j

is the
diffusion coefficient, x is the spatial variable and t is the temporal variable. We obtain for both problems
explicit solutions with a restriction for data only for the second boundary conditions on x = 0. Moreover,
the equivalence of the two free boundary problems is also proved. We generalize the solution obtained in
[J.L. Menaldi, D.A. Tarzia, Generalized Lamé–Clapeyron solution for a one-phase source Stefan problem,
Comput. Appl. Math. 12 (2) (1993) 123–142] for the one-phase Stefan problem. Finally, a particular case
where βj (j = 1,2) are of exponential type given by βj (x) = exp(−(x + dj )2) with x and dj ∈ R is also
studied in details for both boundary temperature conditions at x = 0. This type of heat source terms is
important through the use of microwave energy following [E.P. Scott, An analytical solution and sensitiv-
ity study of sublimation–dehydration within a porous medium with volumetric heating, J. Heat Transfer
116 (1994) 686–693]. We obtain a unique solution of the similarity type for any data when a temperature
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boundary condition at the fixed face x = 0 is considered; a similar result is obtained for a heat flux condition
imposed on x = 0 if an inequality for parameter q0 is satisfied.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Stefan problem; Free boundary problem; Lamé–Clapeyron solution; Neumann solution; Phase-change
process; Fusion; Sublimation–dehydration process; Heat source; Similarity solution

1. Introduction

Following Scott [20], sublimation–dehydration or freeze–drying, is used as a method
for removing moisture from biological materials, such as food. Some of the advantages of
sublimation–dehydration over evaporative drying are that the structural integrity of the material
is maintained and product degradation is minimized (Ang et al. [1], Rosenberg, Bögl [19]). The
major disadvantage of the freeze–drying process is that it is generally slow, and consequently,
the process is economically unfeasible for certain materials. One of the means of alleviating this
problem is through the use of microwave energy.

Several mathematical models have been proposed to describe the freeze–drying process with-
out microwave heating (Fey, Boles [10], Lin [13]). Only a few studies have also included a
microwave heat source in the model (Ang et al. [1]). Phase-change problems appear frequently
in industrial processes; a large bibliography on the subject was given recently in Tarzia [22].

In Menaldi, Tarzia [14] the one-phase Lamé–Clapeyron–Stefan problem [12] with internal
heat sources of general similarity type was studied and a generalized Lamé–Clapeyron explicit
solution was obtained. Moreover, necessary and sufficient conditions were given in order to char-
acterize the source term which provides a unique solution.

In Bouillet, Tarzia [5], the self-similar solutions θ(x, t) = θ(η) = θ(x/
√

t ) of the problem

E(θ)t − A(θ)xx = 1

t
B(η), η > 0,

θ(x, t) = C > 0, t > 0,

E
(
θ(x,0)

) = 0, x > 0,

were studied where E and A are monotone increasing functions, A being continuous, with
E(0) = A(0) = 0 and λ = E(0+) > 0. This equation can describe the conservation of thermal
energy in a heat conduction process for a semi-infinite material with a “self-similar” source or
sink term of the type B(x/

√
t )/t . Moreover, E(θ) represents an energy per unit volume at level

(temperature) θ , A′(θ) � 0 is the thermal conductivity and B(η)/t represents a singular source
or sink depending of the sign of the function B . It was obtained for the inverse function η = η(θ)

an integral equation equivalent to the above problem and it was proven that for certain hypothe-
ses over data there exists at least a solution of the corresponding integral equation following
Bouillet [4].

Several applied papers give us the significance of the source terms in the interior of the ma-
terial which can undergo a change of phase, e.g. Bhattacharya et al. [3], Carslaw, Jaeger [6],
Feng [9], Grigor’ev et al. [11], Mercado et al. [15], Ratanadecho et al. [17], Ward [23]. In
Scott [20] there is a mathematical model for sublimation–dehydration with volumetric heating
of a particular exponential type from which analytical solutions for dimensionless temperature,
vapor concentration, and pressure were obtained for two different temperature boundary condi-
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tions. It was considered a semi-infinite frozen porous medium with constant thermal properties
subject to a sublimation–dehydration process involving a volumetric heat source of the type

g(x, t) = const.

t
exp

(−(x + d)2).
A sensitivity study was also conducted in which the effects of the material properties inherent
in these solutions were analyzed. The mathematical analysis of the analytical solutions is only
given from the numerical computation point of view. In one phase is taken d equals to 0 and in the
other one d is proportional to the constant λ which characterizes the interface position; this last
choice is, for us, a nonadequate choice of a parameter because it depends on the solution itself.

Analytical solutions can provide important insights into the importance of different mate-
rial properties on the solution, which can aid in the development of improved mathematical
models for this process. These solutions provide an important means of evaluating numerical
schemes which can later be used with less restrictive assumptions, if necessary, to simulate ac-
tual processes. Moreover, it can be used to obtain super and sub solutions for general conditions
by using the maximum principle.

In this paper a semi-infinite homogeneous phase-change material initially in solid phase at
the uniform temperature −C < 0, with a volumetric heat source, is considered. A mathematical
description for the temperature within the material is given by

∂T2

∂t
(x, t) = a2

2
∂2T2

∂x2
(x, t) + 1

ρc2
g2(x, t), 0 < x < s(t), t > 0; (1)

∂T1

∂t
(x, t) = a2

1
∂2T1

∂x2
(x, t) + 1

ρc1
g1(x, t), x > s(t), t > 0; (2)

for two given internal source functions (Bouillet, Tarzia [5], Menaldi, Tarzia [14], Scott [20])
given by

gj = gj (x, t) = ρl

t
βj

(
x

2aj

√
t

)
, j = 1,2, (3)

where βj = βj (η) are integrable functions in (0, ε) ∀ε > 0 and βj (η) exp(η2) are integrable
functions in (M,+∞) ∀M > 0. We assume that β1(η) � 0, β2(η) � 0 and ρ is the mass density,
l is the fusion latent heat per unit of mass, a2

j is the diffusion coefficient, cj is the specified heat
per unit of mass and kj is the thermal conductivity, for j = 1,2.

The initial temperature and the temperature as x → ∞ are assumed to be constant

T1(x,0) = T1(+∞, t) = −C < 0, x > 0, t > 0. (4)

At x = 0, two different temperature boundary conditions are considered, the first is a constant
temperature condition

T2(0, t) = B > 0, t > 0, (5)

which is studied in Section 2.1, and the second is an assumed heat flux of the form

k2
∂T2

∂x
(0, t) = −q0√

t
, t > 0, (6)

which is studied in Section 3.
We remark that −q0/

√
t denotes the prescribed heat flux on the boundary x = 0 which is

of the type imposed in Tarzia [21] where it was proven that the heat flux condition (6) on the
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fixed face x = 0 is equivalent to the constant temperature boundary condition (5) for the two
phase Stefan problem for a semi-infinite material with constant thermal coefficient in both phases
without source terms. This kind of heat flux condition was also considered in several papers, e.g.
Barber [2], Coelho Pinheiro [7], Polyanin, Dil’man [16], Rogers [18].

The phase-change interface condition is determined from an energy balance at the free bound-
ary x = s(t):

k1
∂T1

∂x

(
s(t), t

) − k2
∂T2

∂x

(
s(t), t

) = ρlṡ(t), t > 0, (7)

where the temperature conditions at the interface are assumed to be constant:

T1
(
s(t), t

) = T2
(
s(t), t

) = 0, t > 0. (8)

Moreover, the initial position of the free boundary is

s(0) = 0. (9)

In Section 2.1 we obtain an explicit solution for the problem (1)–(5), (7)–(9), when the gen-
eral type of sources given by (3) verifies appropriate properties, and in Section 2.2 we give
monotonicity properties of the solution. Both results are obtained for any data and thermal coeffi-
cients (particularly for all β’s source terms). We remark that when we consider the particular case
C = 0 and β1 = 0 we obtain the solutions given in Menaldi, Tarzia [14] for the one-phase case.

In Section 3 we solve the same free boundary problem but with the heat flux condition of
the type − q0√

t
(q0 > 0) prescribed on the fixed face x = 0, and we obtain an explicit solution

to this problem if the coefficient q0 satisfies an appropriate particular inequality given by (46).
This result is new for the analytical solution. Furthermore, if we take β1 = β2 = 0 we get the
inequality (46) which was given in Tarzia [21] for the classical two-phase Stefan problem.

In Section 4 we prove the equivalence of the two free boundary problems: the first one with
the Dirichlet constant boundary condition (5) considered in Section 2, and the second one with
the Neumann boundary condition (6) considered in Section 3.

In Section 5 we will consider the volumetric heat sources of the type given by expressions (56)
proposed by Scott [20] in thermal processes. In this particular case we can explicitly obtain
conditions (45) and (46) which guarantees the existence of a unique solution, as a function of
the parameters of the two problems, in order to have the corresponding exact similarity solution
in both phases. If we take d1 = d2 = 0 in β’s expressions (56) our solution (63) coincides with
Scott’s solution taking a null vapor mass flow rate.

2. Free boundary problem with temperature boundary condition

2.1. Solution of the free boundary problem with temperature boundary condition at x = 0

Applying the immobilization domain method (see Crank [8]), we are looking for solutions of
the type

Tj (x, t) = θj (y), j = 1,2, (10)

where the new independent spatial variable y is defined by

y = x
. (11)
s(t)
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Then, the condition (7) is transformed into

k1θ
′
1(1) − k2θ

′
2(1) = ρls(t)ṡ(t), (12)

and we must have necessarily that s(t)ṡ(t) = const. i.e.,

s(t) = 2a2λ
√

t, (13)

where the dimensionless parameter λ > 0 is unknown.
Next, we define

Rj (η) = θj

(
η

λ

)
, j = 1,2, η = λy, (14)

then the problem (1)–(5), (7)–(9) is equivalent to the following one:

R′′
2 (η) + 2ηR′

2(η) = −4l

c2
β2(η), 0 < η < λ; (15)

R′′
1 (η) + 2

a2
2

a2
1

ηR′
1(η) = −4a2

2 l

a2
1c1

β1

(
a2

a1
η

)
, η > λ; (16)

R1(λ) = R2(λ) = 0; (17)

k1R
′
1(λ) − k2R

′
2(λ) = 2ρlλa2

2; (18)

R1(+∞) = −C; (19)

R2(0) = B. (20)

After some elementary computations, from (15), (17) and (20) we obtain

R2(η) = B − (
B + ϕ2(λ)

)erf(η)

erf(λ)
+ ϕ2(η), 0 < η < λ,

ϕ2(η) = 2l
√

π

c2

η∫
0

β2(u) exp
(
u2)(erf(u) − erf(η)

)
du (21)

and, from (16), (17) and (19), we have

R1(η) = − (C + ϕ1(+∞))

erf c( a2
a1

λ)

2√
π

a2
a1

η∫
a2
a1

λ

exp
(−u2)du + ϕ1(η), η > λ,

ϕ1(η) = 2l
√

π

c1

a2
a1

η∫
a2
a1

λ

β1(u) exp
(
u2)[erf(u) − erf

(
a2

a1
η

)]
du (22)

where λ is the unknown coefficient which must verify the condition (18).
Furthermore, Eq. (18) for λ is equivalent to the following equation

f1(x,β1) = f2(x,β2), x > 0, (23)

where
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f1(x,β1) = F0(x) h1(x,β1), (24)

f2(x,β2) = Q

(
a2

a1
x

)
h2(x,β2) (25)

with

Q(x) = √
πx exp

(
x2)(1 − erf(x)

)
, x > 0, (26)

F0(x) = x erf(x) exp
(
x2), x > 0, (27)

h1(x,β1) = Ste1 − 2
√

π

+∞∫
a2
a1

x

erf c(u)β1(u) exp
(
u2)du, (28)

h2(x,β2) = Ste2√
π

− F(x,β2), x > 0, (29)

with

F(x,β2) = F0(x) − 2

x∫
0

erf(u)β2(u) exp
(
u2)du, x > 0, (30)

and

Ste1 = Cc1

l
, Ste2 = Bc2

l
(31)

are the Stefan numbers for phases j = 1 and j = 2, respectively.

Theorem 1. Equation (23) has a unique solution λ > 0. Moreover, the free boundary problem
with heat source terms (1)–(5), (7)–(9) has an explicit solution given by

T1(x, t) = −(C + ϕ1(+∞))

erf c( a2
a1

λ)

[
erf

(
x

2a1
√

t

)
− erf

(
a2

a1
λ

)]
+ ϕ1

(
x

2a2
√

t

)
,

for x > s(t), t > 0;

T2(x, t) = 2l
√

π

c2

x

2a2
√

t∫
0

β2(u) exp
(
u2)(erf(u) − erf

(
x

2a2
√

t

))
du

+ B − (
B + ϕ2(λ)

)erf( x

2a2
√

t
)

erf(λ)
for 0 < x < s(t), t > 0, (32)

where ϕ1(η) and ϕ2(η) are defined in (22), (21) respectively and the free boundary s(t) is given
by (13) where the coefficient λ is the unique solution of Eq. (23).

Proof. Taking into account Appendix A (Lemma A.1) we can prove that Eq. (23) has a unique
solution λ > 0. We invert relations (14), (10) and (11) in order to obtain an explicit solution of
problem (1)–(5), (7)–(9) with the source terms gj defined by (3). �
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Remark 1. If the initial temperature C = 0 and the solid phase source β1 = 0 then we have the
one-phase Stefan problem with a constant temperature B at the fixed face x = 0 which is the
problem considered in Menaldi, Tarzia [14]. The solution is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T (x, t) = T2(x, t) = B − (
B + ϕ2(λ)

)erf( x

2a2
√

t
)

erf(λ)

+ 2l
√

π

c2

x

2a2
√

t∫
0

β2(u) exp
(
u2)(erf(u) − erf

(
x

2a2
√

t

))
du,

0 < x < s(t), t > 0;
s(t) = 2λa2

√
t,

(33)

where λ is the unique solution of equation F(x,β2) = Ste2√
π

, x > 0.

Remark 2. In the particular case β1 = β2 = 0 we have the classic Neumann solution (see
Carslaw, Jaeger [6]).

2.2. Monotonicity properties

We denote by Tβ1β2,1(x, t), Tβ1β2,2(x, t) and sβ1β2(t) (i.e., λβ1β2) the solution to problem
(1)–(5), (7)–(9) for data β1 and β2. We will compare this solution with that corresponding to the
case β1 = 0 and β1 = β2 = 0.

We obtain a monotonicity property for the corresponding free-boundaries in Lemma 2 and for
temperatures in Theorem 3.

Lemma 2. If β1 � 0 and β2 � 0 then we have the following monotonicity properties:

(i) s0β2(t) � sβ1β2(t) � sβ10(t), t > 0,

(ii) s0β2(t) � s00(t) � sβ10(t), t > 0. (34)

Proof. In order to prove (34) it is sufficient to show the same inequality for the coefficient λ,
that is,

(i) λ0β2 � λβ1β2 � λβ10,

(ii) λ0β2 � λ00 � λβ10.
(35)

We can rewrite Eq. (23) for λ by the following

G1(x,β1) = G2(x,β2) (36)

where the real functions G1 and G2 are defined by

G1(x,β1) = F0(x)

[
Ste1 + Q

(
a2

a1
x

)
− 2

√
π

+∞∫
a2
a1

x

erf c(u)β1(u) exp
(
u2)du

]
, (37)

G2(x,β2) = Q

(
a2

a1
x

)[
Ste2√

π
+ 2

x∫
erf(u)β2(u) exp

(
u2)du

]
. (38)
0
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Taking into account β1 � 0 and β2 � 0 and by comparison of functions G1 and G2 we ob-
tain (35)(i), (ii). See Appendix A (Lemma A.2). �
Theorem 3. The solution to problem (1)–(5), (7)–(9) for data β1 � 0 and β2 � 0 satisfies the
following monotonicity properties:

(i) Tβ1β2,2(x, t) � Tβ10,2(x, t), 0 � x � sβ1β2(t), t > 0,

(ii) T00,2(x, t) � Tβ10,2(x, t), 0 � x � s00(t), t > 0,

(iii) T0β2,2(x, t) � T00,2(x, t), 0 � x � s0β2(t), t > 0,

(iv) T0β2,1(x, t) � T00,1(x, t), x > s00(t), t > 0,

(v) T0β2,2(x, t) � Tβ1β2,2(x, t), 0 � x � s0β2(t), t > 0,

(vi) T0β2,1(x, t) � Tβ1β2,1(x, t), x > sβ1β2(t), t > 0,

(vii) T00,1(x, t) � Tβ10,1(x, t), x > sβ10(t), t > 0,

(viii) Tβ1β2,1(x, t) � Tβ10,1(x, t), x > sβ10(t), t > 0. (39)

Proof. From maximum principle we obtain (39). We will only give the proof of the prop-
erty (vii).

Let u(x, t) = Tβ10,1(x, t) − T00,1(x, t). Function u satisfies the following conditions:

ut − a2
1uxx = l

c1t
β1

(
x

2a1
√

t

)
� 0, x > sβ10(t), t > 0,

u
(
sβ10(t), t

) = −T00,1
(
sβ10(t), t

)
� 0, t > 0,

u(x,0) = Tβ10,1(x,0) − T00,1(x,0) = −C − (−C) = 0, x > sβ10(t).

Then we have u(x, t) � 0 for x > sβ10(t), t > 0. �
These monotonicity properties can be interpreted by physical considerations and can be used

in order to obtain super and sub explicit solutions for general conditions by using the maximum
principle.

3. Solution of the free boundary problem with a heat flux condition on the fixed face x = 0

In this section we consider problem (1)–(5), (7)–(9), but condition (5) will be replaced by
condition (6) (see Rogers [18], Tarzia [21]). We can define the same transformations (10), (11)
and (14) as were done for the previous problem, and we obtain (15)–(19) and

R′
2(0) = −2q0

ρc2a2
. (40)

It easy to see that the free boundary must be of the type s(t) = 2a2μ
√

t where μ is a dimen-
sionless constant to be determined. The solution to problem (15)–(19) and (40) is given by

R1(η) = − (C + ϕ1(+∞))

erf c( a2 μ)

[
erf

(
a2

a1
η

)
− erf

(
a2

a1
μ

)]
+ ϕ3(η), η > μ,
a1
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ϕ3(η) = 2l
√

π

c1

a2
a1

η∫
a2
a1

μ

β1(u) exp
(
u2)[erf(u) − erf

(
a2

a1
η

)]
du (41)

and

R2(η) = q0
√

π

ρc2a2

(
erf(μ) − erf(η)

) + ϕ2(η) − ϕ2(μ), 0 < η < μ, (42)

where ϕ2 was defined in (21) and the unknown μ must satisfy the following equation

W(x,β1) = V (x,β2), x > 0, (43)

where

W(x,β1) = x exp(x2)

Q(a2
a1

x)

[
Ste1 − 2

√
π

+∞∫
a2
a1

x

erf c(u)β1(u) exp
(
u2)du

]

and

V (x,β2) = q0

ρla2
− x exp

(
x2) + 2

x∫
0

β2(u) exp
(
u2)du. (44)

Theorem 4.

(a) If condition

+∞∫
0

erf c(u)β1(u) exp
(
u2)du � Ste1

2
√

π
(45)

holds then Eq. (43) has a unique solution μ > 0 if and only if q0 satisfies the following
inequality:

q0 � 2a1ρl

[
Ste1

2
√

π
−

+∞∫
0

erf c(u)β1(u) exp
(
u2)du

]
. (46)

(b) If

+∞∫
0

erf c(u)β1(u) exp
(
u2)du >

Ste1

2
√

π
(47)

holds, then Eq. (43) has at least a solution μ > 0 ∀q0 > 0.
(c) Under the hypothesis assumed for βi (i = 1,2) given in the Introduction, the free boundary

problem with sources term (1)–(4), (6)–(9) has an explicit solution given by

T1(x, t) = −(C + ϕ3(+∞))

erf c( a2
a1

μ)

[
erf

(
x

2a1
√

t

)
− erf

(
a2

a1
μ

)]
+ ϕ3

(
x

2a2
√

t

)
for x > s(t), t > 0, (48)
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T2(x, t) = q0
√

π

ρc2a2

[
erf(μ) − erf

(
x

2a2
√

t

)]
+ ϕ2

(
x

2a2
√

t

)
− ϕ2(μ)

for 0 < x < s(t), t > 0, (49)

where ϕ3 and ϕ2 are defined in (41) and (21) respectively, the free boundary is given by

s(t) = 2a2μ
√

t,

and μ is the unique solution given in (a) or (b).

Proof. To prove (a) and (b) we use the definitions of the functions W and V , and Lemma A.2
(see Appendix A).

We invert relations (14), (10) and (11) in order to obtain (48)–(49). �
Remark 3. In the particular case β1 ≡ 0 and β2 � 0 we have that

∃!μ > 0 solution of Eq. (43) ⇐⇒ q0 >
Ck1

a1
√

π

which was the result obtained by Tarzia [21].

Remark 4. Taking into account Lemma A.2 (Appendix A) we can prove the same monotonicity
properties given in Section 2.2.

4. Equivalence of the two free boundary problems

We consider the solution T2(x, t) of problem (1)–(4), (6)–(9) given by (49). We com-
pute T2(0, t) and we have

T2(0, t) = q0
√

π

ρc2a2
erf(μ) − ϕ2(μ)

= q0
√

π

ρc2a2
erf(μ) − 2l

√
π

c2

μ∫
0

β2(z) exp
(
z2)(erf(z) − erf(μ)

)
dz

= B0(μ) (50)

which is constant in time.
If we replace B by B0(μ) in condition (5) and we solve problem (1)–(5), (7)–(9) we obtain

the similarity solutions

T ∗
1 (x, t) = −(C + ϕ1(+∞))

erf c( a2
a1

λ)

[
erf

(
x

2a1
√

t

)
− erf

(
a2

a1
λ

)]
+ ϕ1

(
x

2a2
√

t

)
,

for x > s(t), t > 0,

T ∗
2 (x, t) = B0(μ) − (

B0(μ) + ϕ2(λ)
)erf( x

2a2
√

t
)

erf(λ)

+ 2l
√

π

c2

x

2a2
√

t∫
0

β2(u) exp
(
u2)(erf(u) − erf

(
x

2a2
√

t

))
du,

for 0 < x < s(t), t > 0,
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where ϕ1(η) and ϕ2(η) are defined in (22), (21) respectively and s(t) = 2λa2
√

t is the free
boundary. The coefficient λ must be the solution of the following equation:

f1(x,β1) = Q

(
a2

a1
x

)[
Ste∗

2√
π

− F(x,β2)

]
, x > 0, Ste∗

2 = B0(μ)c2

l
. (51)

We remark that Eq. (51) is Eq. (23) where Ste2 has been replaced by Ste∗
2.

Theorem 5. Under the hypotheses (45) and (46) the solution μ of Eq. (43) is also solution of
Eq. (51), i.e., μ = λ.

Proof. We have:

μ is a solution of Eq. (51)

⇐⇒ f1(μ,β1) = Q

(
a2

a1
μ

)[
B0(μ)c2

l
√

π
− F(μ,β2)

]

⇐⇒ F0(μ)

(
Ste1 − 2

√
π

+∞∫
a2
a1

μ

erf c(z)β1(z) exp
(
z2)dz

)

= Q

(
a2

a1
μ

)
erf(μ)

(
q0

ρla2
+ 2

μ∫
0

β2(z) exp
(
z2)dz − μ exp

(
μ2))

⇐⇒ W(μ,β1) = V (μ,β2)

⇐⇒ μ is a solution of Eq. (43), i.e., μ = λ. �
Corollary 6. The coefficient λ a solution of Eq. (23) satisfies the following inequality:

B + ϕ2(λ)

erf(λ)
� la1

c2a2

[
Ste1 − 2

√
π

+∞∫
0

erf c(z)β1(z) exp
(
z2)dz

]
. (52)

Inequality (52) is a generalization of the inequality for the coefficient which characterizes
the free boundary s(t) of the Neumann solution for the particular case β1 = β2 = 0 obtained in
Tarzia [21], given by

erf(λ) <
Ba2c2

Ca1c1
= B

C

√
c2k2

c1k1
. (53)

5. Study of a particular case

We study the important particular case which has been considered in Scott [20] for
sublimation–dehydration with volumetric heating since it is of interest in microwave energy.
Taking into account the g’s internal source functions given in [20] and definition (3) we can
choose in our computation the following expressions for βi ’s function:

β1(x/2a1
√

t ) = exp
(−(x/2a1

√
t + d1)

2), (54)

β2(x/2a2
√

t ) = − exp
(−(x/2a2

√
t + d2)

2), d1, d2 ∈ R. (55)
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From (11) and (14) we can take from now on

β1(η) = exp
(−(η + d1)

2), β2(η) = − exp
(−(η + d2)

2), d1, d2 ∈ R. (56)

The functions ϕ1, ϕ2 and ϕ3 defined by (22), (21) and (41) respectively, are given by

ϕ1(η) = l
√

π

c1d1
exp

(−d2
1

)[
exp

(
−2

a2

a1
λd1

)(
erf

(
a2

a1
λ

)
− erf

(
a2

a1
η

))

+ exp
(
d2

1

)(
erf

(
a2

a1
η + d1

)
− erf

(
a2

a1
λ + d1

))]
, if d1 
= 0, (57)

ϕ1(η) = 2l
√

π

c1

[
a2

a1
λ

(
erf

(
a2

a1
η

)
− erf

(
a2

a1
λ

))

+ 1√
π

(
exp

(
−

(
a2

a1
η

)2)
− exp

(
−

(
a2

a1
λ

)2))]
, if d1 = 0, (58)

ϕ2(η) = −l
√

π

c2d2

[
erf(η + d2) − erf(d2) − erf(η) exp

(−d2
2

)]
, if d2 
= 0, (59)

ϕ2(η) = 2l

c2

[
1 − exp

(−η2)], if d2 = 0, (60)

ϕ3(η) = l
√

π

c1d1
exp

(−d2
1

)[
exp

(
−2

a2

a1
μd1

)(
erf

(
a2

a1
μ

)
− erf

(
a2

a1
η

))

+ exp
(
d2

1

)(
erf

(
a2

a1
η + d1

)
− erf

(
a2

a1
μ + d1

))]
, if d1 
= 0, (61)

and

ϕ3(η) = 2l
√

π

c1

[
a2

a1
μ

(
erf

(
a2

a1
η

)
− erf

(
a2

a1
μ

))

+ 1√
π

(
exp

(
−

(
a2

a1
η

)2)
− exp

(
−

(
a2

a1
μ

)2))]
, if d1 = 0. (62)

Theorem 7. The explicit solution to the free boundary problem with sources term (1)–(5), (7)–(9)
is given by

T1(x, t) = −(C + ϕ1(+∞))

erf c( a2
a1

λ)

[
erf

(
x

2a1
√

t

)
− erf

(
a2

a1
λ

)]
+ ϕ1

(
x

2a2
√

t

)
,

for x > s(t), t > 0;

T2(x, t) = ϕ2

(
x

2a2
√

t

)
+ B − (

B + ϕ2(λ)
)erf( x

2a2
√

t
)

erf(λ)
,

for 0 < x < s(t), t > 0, (63)

where ϕ1 and ϕ2 are given by (57)–(60), and

s(t) = 2λa2
√

t (64)

is the free boundary with λ the unique solution of Eq. (23).

Proof. Taking into account expressions (57)–(60) we obtain the explicit expressions (63) for the
temperatures T1 and T2. �
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Theorem 8.

(a) Inequality (45) is equivalent to

Ste1 � 2, for d1 � 0, Ste1 � 2
√

πP (d1), for d1 < 0, (65)

where

P(x) = exp(−x2) − erf c(x)

2x
. (66)

(b) Inequality (46) is equivalent to

q0 � a1ρl

[
Ste1√

π
− 1

d1

(
exp

(−d2
1

) − erf c(d1)
)]

if d1 
= 0, (67)

q0 � a1ρl√
π

[Ste1 − 2] if d1 = 0. (68)

(c) Inequality (52) is equivalent to

B − l
√

π

c2d2
(erf(λ + d2) − erf(d2) − erf(λ) exp(−d2

2 ))

erf(λ)

� la1

c2a2

[
Ste1 −

√
π

d1

(
exp

(−d2
1

) − erf c(d1)
)]

if d1 
= 0, (69)

and

B − 2l
c2

[1 − exp(−λ2)]
erf(λ)

� la1

c2a2
[Ste1 − 2] if d1 = 0. (70)

(d) The free boundary problem with sources term (1)–(4), (6)–(9) has an explicit solution given
by

T1(x, t) = −(C + ϕ3(+∞))

erf c( a2
a1

μ)

[
erf

(
x

2a1
√

t

)
− erf

(
a2

a1
μ

)]
+ ϕ3

(
x

2a2
√

t

)
for x > s(t), t > 0; (71)

T2(x, t) = q0
√

π

ρc2a2

[
erf(μ) − erf

(
x

2a2
√

t

)]
+ ϕ2

(
x

2a2
√

t

)
− ϕ2(μ)

for 0 < x < s(t), t > 0, (72)

where ϕ3 and ϕ2 are defined in (61)–(62) and (59)–(60) respectively, the free boundary is
given by

s(t) = 2a2μ
√

t, (73)

and μ is the unique solution of Eq. (43).

Proof. (a) We have

+∞∫
erf c(u)β1(u) exp

(
u2)du =

⎧⎨
⎩P(d1) = exp(−d2

1 )−erf c(d1)

2d1
, if d1 
= 0,

1√
π
, if d1 = 0,

(74)
0
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where the function P(x) satisfies the following properties:

P(0) = 1√
π

, P (+∞) = 0, P (−∞) = 0, P (x) > 0 ∀x.

Then we obtain that condition (45) is equivalent to

2 � Ste1, if d1 = 0 or 2
√

πP (d1) � Ste1, if d1 
= 0.

(b) To obtain (67) we replace expression (74) in (46).
(c) If we replace ϕ2(λ) for expressions (59) or (60) in (52) we obtain (69) or (70) respectively.
(d) Taking into account expressions (59)–(62) we obtain explicit expressions (71) and (72) for

the temperatures T1 and T2. �
Remark 5. If we take d1 = d2 = 0 in (56) solution (63) was given by Scott [20] by taking

Td(x, t) = Ts − Tv

B
T2(x, t) + Tv and Tf (x, t) = Tv − Ti

C
T1(x, t) + Tv

where Ts, Tv and Td were defined in Scott [20].

6. Conclusions

As regards the two-phase Stefan problem with general source terms of a similarity type in
both liquid and solid phases for a semi-infinite phase-change material we have arrived at the
following conclusions:

(1) An explicit solution for a constant temperature condition B > 0 at the fixed face x = 0 for
any data has been obtained.

(2) An explicit solution for an assumed heat flux of the form − q0√
t

(q0 > 0) has been obtained
for data verifying restrictions (45) and (46).

(3) The equivalence of the two previous free boundary problems has also been proved and an in-
equality (52) for the coefficient λ which characterizes the phase change position is obtained.

(4) An explicit solution for the particular case (56) where functions βj (j = 1,2) are of an
exponential type which are of interest in microwave energy is obtained for any temperature
boundary condition B > 0.

(5) An explicit solution for the particular case (56) is obtained when a heat flux condition of
the type (6) is imposed on x = 0; this kind of solution there exists when the parameter q0
satisfies the inequalities (67) and (68); this is new with respect to Scott [20].
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Appendix A. Mathematical properties of some useful functions

Lemma A.1.

(A) Functions Q(x), F0(x) and F(x,β2) satisfy the following properties:
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(i) Q(0) = 0, Q(+∞) = 1, Q′(x) > 0, ∀x > 0, Q′(0) = √
π.

(ii) F0(0) = 0, F0(+∞) = +∞, F ′
0(x) > 0, ∀x > 0.

(iii) F (0, β2) = 0, F (+∞, β2) = +∞,
∂F

∂x
(x,β2) > 0, ∀x > 0. (A.1)

(B) Functions hj (x,βj ) (j = 1,2) satisfy the following properties:

(i) h1(0+, β1) = Ste1 − 2
√

π

+∞∫
0

erf c(u)β1(u) exp
(
u2)du;

(ii) h1(+∞, β1) = Ste1;

(iii)
∂h1

∂x
(x,β1) = 2

√
π

a2

a1
erf c

(
a2

a1
x

)
exp

(
a2

a1
x

)2

β1

(
a2

a1
x

)
> 0, ∀x > 0;

(iv) if

+∞∫
0

erf c(u)β1(u) exp
(
u2)du � Ste1

2
√

π
(A.2)

then h1(x,β1) > 0, ∀x > 0;
(v) if

+∞∫
0

erf c(u)β1(u) exp
(
u2)du >

Ste1

2
√

π
(A.3)

then there exists a unique ξ1 > 0, such that h1(ξ1, β1) = 0 and h1(x,β1) is negative
in (0, ξ1), is positive in (ξ1,+∞);

(vi) h2(0+, β2) = Ste2√
π

;

(vii) h2(+∞, β2) = −∞;

(viii)
∂h2

∂x
(x,β2) = −

{
2x√
π

+ exp
(
x2

)
erf(x)

[
1 + 2x2 − 2β2(x)

]}
< 0;

(ix) there exist a unique ξ2 > 0 such that h2(ξ2, β2) = 0.
(C) (a) Function f1(x,β1), satisfies the following properties:

(i) f1(0+, β1) = 0;
(ii) f1(+∞, β1) = +∞;

(iii) if condition (A.2) is verified then f1(x,β1) > 0 ∀x > 0,

∂f1

∂x
(x,β1) > 0 and

∂f1

∂x
(0+, β1) = 0+;

(iv) if condition (A.3) is verified then f1(ξ1, β1) = 0 and f1(x,β1) is negative in (0, ξ1),
and is positive in (ξ1,+∞); then there exists x1 ∈ (0, ξ1) such that ∂f1

∂x
(x1, β1) = 0.

Moreover we have ∂f1
∂x

(x,β1) > 0 ∀x > ξ1.
(b) Function f2(x,β2) satisfies the following properties:

(i) f2(0+, β2) = 0;
(ii) f2(+∞, β2) = −∞;
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(iii) f2(ξ2, β2) = 0;

(iv)
∂f2

∂x
(x,β2) = a2

a1
Q′

(
a2

a1
x

)
h2(x,β2) + Q

(
a2

a1
x

)
∂h2

∂x
(x,β2);

(v)
∂f2

∂x
(0+, β2) = a2

a1
Ste2 > 0;

(vi) there exists x2 ∈ (0, ξ2) such that ∂f2
∂x

(x2, β2) = 0;

(vii) ∂f2
∂x

(x,β2) < 0, ∀x > ξ2.

Proof. (A) The properties for F0 and Q are easy to check and the function F appears for the
one-phase case which was considered in Menaldi, Tarzia [14].

(B) It easily follows from (A) and definitions (28)–(29).
(C) We use the definitions of the corresponding real functions and (A) and (B). We remark that

in (a)(iv) we have f1(x,β1) < 0 ∀x ∈ (0, ξ1) and in (b)(vi) we have f2(x,β2) > 0 in (0, ξ2). �
Lemma A.2. Function G1 has the following properties:

(i) G1(0, β1) = 0,
(ii) G1(+∞, β1) = +∞,

(iii) if condition (A.2) is verified then G1(x,β1) > 0, ∀x > 0,
(iv) if condition (A.3) is verified then there exists a unique ξ > 0 such that G1(ξ,β1) = 0 and

G1(x,β1) is negative in (0, ξ), G1 is positive in (ξ,+∞),
(v) G1(0,0) = 0,

(vi) G1(+∞,0) = +∞,

(vii)
∂G1

∂x
(x,0) > 0, ∀x > 0, and

∂G1

∂x
(0,0) = 0.

Function G2 has the following properties:

(i) G2(0, β2) = 0,
(ii) G2(0,0) = 0,

(iii) G2(+∞,0) = Ste2√
π

,

(iv) G2(+∞, β2) = Ste2√
π

+ 2

+∞∫
0

erf(u)β2(u) exp
(
u2)du,

(v) ∂G2
∂x

(x,0) > 0 ∀x > 0,

(vi) G2(x,β2) � G2(x,0) ∀x � 0.

Lemma A.3.

(a) Function W(x,β1) satisfies the following properties:

(i) W(0, β1) = a1

a2
√

π

[
Ste1 − 2

√
π

+∞∫
erf c(u)β1(u) exp

(
u2)du

]
,

0
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(ii) W(+∞, β1) = +∞,
(iii) W(x,β1) � W(x,0), ∀x > 0, β1 > 0,
(iv) if condition (A.2) is verified then W(0, β1) � 0 and

∂W

∂x
(x,β1) > 0, ∀x > 0,

(v) if condition (A.3) is verified then W(0, β1) < 0.
(b) Function V (x,β2) satisfies the following properties:

(i) V (0, β2) = q0
ρla2

,

(ii) V (+∞, β2) = −∞,

(iii) ∂V
∂x

(x,β2) < 0, ∀x > 0,

(iv) V (x,β2) � V (x,0), ∀x > 0, β2 < 0.

Proof. In order to prove (a)(iii) we use that Q′(x) is given by Q′(x) = Q(x)(1+2x2)−2x2

x
.

We demonstrate the other properties by elementary computations. �
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INTRODUCTION

The convective method of drying is used most commonly in
industrial technology of drying. In this method, the heat necessary for
moisture evaporation is supplied convectively by hot air or superheated
steam through the material surface. In such a case, the gradient of
temperature is pointed outwards and the heat flux is pointed into the
material. So, the thermodiffusional mass flow is in the opposite direction
to the diffusional flux of moisture. As a result, the distribution of
moisture can achieve a strongly nonlinear mapping, and this may be
a reason for the generation of strong shrinkage stresses. Therefore, one
should look for another means of heat supply, namely, such a means
by which the diffusional and thermodiffusional fluxes of moisture are
pointed in the same direction. One of several possible ways is to apply
the microwave generation of heat inside the material.

The main aim of this article is to show that heat supplied
volumetrically to the dried material causes the diffusional and thermo-
diffusional flow of moisture in the same direction, and thus, more
uniform distribution of the moisture content in the material and smaller
values of the shrinkage stresses. Our attention is concentrated on the
microwave drying, by which the heat is generated volumetrically inside
the dried material.

Microwave drying has been studied recently by several authors: Chen
et al.,[1] Constant et al.,[2] Feng et al.,[3] Perre and Turner,[7] Ratanadecho
et al.,[8–10] Sanga et al.,[12] Turner and Illic,[13] Zhang and Mujumdar,[16]

Zielonka et al.,[17] among others. However, little attention has been
devoted to the analysis of mechanical effects arising in materials under
this kind of drying, and in particular to the drying induced stresses.
Generally, one can state that the volumetrically generated heat in dried
materials, as it takes place in microwave drying, gives better mechanical
quality products than by convective heat supply through the boundary
surface, mainly due to substantial reduction of drying induced stresses.

The mechanistic drying theory presented in Kowalski[5] forms the
basis for the present analysis. The governing equations for heat and mass
transfer, adapted to a cylindrically shaped sample, are solved numerically
with the finite element method (Rybicki[11] and Wait and Mitchell[14]).

1174 Kowalski and Rybicki
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The temperature, moisture, and stress distributions at different instances
for both microwave and convective drying are presented.

GOVERNING EQUATIONS FOR

HEAT AND MASS TRANSFER

The general mechanistic drying theory used here for analysis of the
mechanical effects in dried materials was developed systematically on
the basis of balance equations for mass, momentum, energy, and entropy,
as well as on the statements of the conservation laws and the principles of
irreversible thermodynamics (Kowalski[5]). Adopting this theory to the
present considerations, we made the following assumptions:

– The dried body is assumed to be an isotropic capillary-porous
solid of density �s.

– The pores in the body are filled with liquid (l )–vapor (v) mixture
of partial mass density �m¼ �lþ �v� �l, i.e., saturated body.

– The moisture flux inside the material is proportional to the
gradient of moisture potential, and that on the boundary surface
is proportional to the difference of chemical potentials of vapor at
the boundary and far from the boundary. Diffusivity is assumed
constant.

– The heat flux includes both conduction and transport of heat by
moisture flux.

– The heat and mass transfer includes coupling effects; however,
the influence of body volume deformation on heat and mass
transfer is neglected.

– The dried material is elastic.
– Gravity forces are neglected.
– The microwave energy absorption term is constructed as the

local microwave power multiplied by the water content and an
exponentially formulated attenuation term dependent on the
distance in microwave propagation and the attenuation factor.

– The boundary value problem is two-dimensional; the analyzed
functions depend on coordinates r, z (radius and height of the
cylinder), and time t.

The governing equations reduced to solve the axial-symmetry
boundary value problem include: the system of equations describing
heat and mass transfer, the equations of equilibrium of internal force,
and the physical relations.

Convective and Microwave Drying of Saturated Porous Materials 1175
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Let X¼ �m/�s denotes the ratio of moisture content referred to the
mass of a dry body, and W is the mass flux of the moisture. The mass
balance for the moisture reads (Kowalski[5])

�s _XX ¼ �divW ð1Þ

Based on the above-mentioned reference, we write the following
(reduced) form of energy balance

�sT _SS ¼ �divðq� smT WÞ þ < ð2Þ

where S denotes total entropy referred to the mass of a dry body, q is the
heat flux, sm is the entropy of moisture, T is the temperature of the body,
and < is the internal source of heat (radiation). This equation points out
that the entropy alteration is due to heat flux conducted and heat
transported by the mass flux, as well as by the internal heat generation
(radiation).

The following mass and heat fluxes resulted from the thermodynamic
inequality (see Ref.[5])

W ¼ ��mgrad�, �m � 0 ð3Þ

q ¼ ��TgradT � smT W , �T � 0 ð4Þ

In these relationships � is the generalized chemical potential of the
moisture, �m is termed the mobility coefficient dependent on the surface
tension and viscosity of the moisture, as well as on the permeability and
porosity of the dried body, while �T is the effective thermal conductivity,
being volume averaged from conductivity coefficients of solid, liquid, and
vapor phases. In Eq. (4), the sign ‘‘minus’’ between the conducted and
convected heat flux holds when the moisture flux W flows outwards
the body.

The generalized chemical potential � and the entropy S are functions
of the body thermodynamic state, defined by the temperature T,
volumetric strain ", and moisture content X. In further considerations,
we neglect the influence of the volumetric strain gradient on moisture
transport, and the volumetric strain rate on the temperature alteration.
So, after substituting mass and heat fluxes of Eqs. (3) and (4) into the
balances of mass and energy of Eqs. (1) and (2), we obtain the following
system of differential equations describing the heat and mass transfer

�s _XX ¼ �mðcTr
2T þ cXr

2XÞ ð5Þ

�sðcv _TT þ l _XXÞ ¼ �Tr
2T þ < with r2 ¼

@2

@r2
þ
1

r

@

@r
þ

@2

@z2
ð6Þ
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where r
2 is the Laplace operator in cylindrical coordinates with axial

symmetry, cT and cX are the thermodifusional and diffusional coefficients
of moisture transport, cv is the total volume averaged specific heat
referred to unit mass of a dry body, and l¼ (sv� sl)T is the latent heat of
evaporation, being the difference of vapor and liquid entropy multiplied
by temperature.

The internal source of heat < is zero for the convective drying. In the
case of microwave drying, it expresses the rate of microwave energy
absorbed per unit volume, and is constructed as follows

< ¼ <0
X

X0
exp½��ðR� rÞ� ð7Þ

where X is the moisture content at time t and radius r, X0 is the moisture
content at time t¼ 0 and radius r, � is the attenuation factor in the
direction of microwave propagation distance (R� r), R is the cylinder
radius, and <0 is the experimentally estimated average microwave power.

Using our 8-modal microwave chamber dryer type WS110 firm
PLAZMATRONIKA of maximum microwave power 600W, we have
estimated the average microwave power on the cylindrical kaolin sample
using the formula

<0 ¼
2

R
�T ðTn � TaÞ þ l

�m

A�t

� �
ð8Þ

In this formula: �T denotes the coefficient of convective heat
exchange, Tn is the sample surface temperature (adjusted automatically
by the microwave dryer), Ta is the temperature of the ambient medium,
l is the latent heat of water evaporation, �m is the loss of a sample weight
per time increment �t, and A is the area of evaporation.

Figure 1 presents the geometry of the sample under consideration.
The undersurface of the cylindrically shaped sample is placed on the
impermeable plate, whereas the other surfaces are open for moisture
release. The sample is assumed to be enough long so that the supply of
microwave power takes place mainly through the lateral surface of the
cylinder (see Eq. (7)).

The following boundary conditions for mass and heat transfer hold
for both convective and microwave drying. These for mass transfer,
expressed with the help of moisture potential, are as follows:

@�

@z
z¼0j ¼ 0, ��m

@�

@z
z¼Hj ¼ �mð�jz¼H � �aÞ ð9aÞ

@�

@r
r¼0j ¼ 0, ��m

@�

@z
z¼Rj ¼ �mð�jz¼R � �aÞ ð9bÞ
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where �m denotes the coefficient of convective mass transfer, and �a is

the chemical potential of vapor in the ambient medium. The conditions

on the left express impermeability (the upper) and symmetry (the

lower one), while these on the right, represent the convective exchange

of mass.
The boundary conditions for heat transfer are similar in form to

these for mass transfer, namely

��T
@T

@z
z¼0j ¼ �T ðT jz¼0 � TaÞ,

��T
@T

@z
z¼Hj ¼ �T ðT jz¼H � TaÞ � l�mð�jz¼H � �aÞ ð10aÞ

@T

@r
r¼0j ¼ 0,��T

@T

@z
z¼Rj

¼ �T ðT jz¼R � TaÞ � l�mð�jz¼R � �aÞ ð10bÞ

where constant value of the coefficient of convective heat exchange �T
is assumed.

Figure 1. Geometry of the dried sample: (a) convective drying, (b) microwave

drying.
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The upper condition on the left expresses the convective exchange of
heat on the lower moisture-impermeable plate, the lower on the left is the
symmetry condition. The conditions on the right describe the convective
heat exchange with taking into account the heat escaping with the vapor.

The initial conditions express the values of moisture content and
temperature at the beginning of drying, that is

Xðr, z, tÞjt¼0 ¼ X0 ¼ const and Tðr, z, tÞjt¼0 ¼ T0 ¼ const ð11Þ

The numerical method used for solution of this initial-boundary
value problem was the Galerkin discretization method (finite element
method) for spatial derivatives, and the finite difference method for
time derivatives (see Kowalski and Rybicki,[6] Rybicki,[11] Wait and
Mitchell[14]).

NUMERICAL PREDCTION OF TEMPERATURE

AND MOISTURE CONTENT

In numerical calculations the gradient of moisture potential inside
the material was replaced by the gradients of temperature and moisture
content, that is

grad� ¼ cTgradT þ cXgradX ð12Þ

The moisture potential on the external boundary surface was
assumed to be equal to the vapor moisture potential at the boundary, i.e.,

�jr¼R ¼ �ðpvjr¼R,T jr¼RÞ ¼ �ðp, xjr¼R,T jr¼RÞ ð13Þ

where pv|r¼R¼ px|r¼R denotes the vapor partial pressure and x|r¼R is
the molar vapor content in air at the boundary, and p is the total pressure
of air.

Developing the moisture (vapor) potentials in air in Taylor’s series
one can replace the difference in moisture potentials on the right hand
side of boundary conditions (9a) and (9b) by the following expression

�mð�jB � �aÞ ffi �xðxjB � xaÞ þ �T ðT jB � TaÞ ð14Þ

where �x and �T can be termed as the diffusion and thermodiffusion
coefficients of vapor in the surrounding air, and |B means the boundary
surface.

All numerical calculations, for both convective and microwave
drying, refer to the kaolin cylinder of radius R¼ 0.025m and height
H¼ 0.1m. The initial moisture content of the cylinder was assumed to
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be X0¼ 28% (dry basis state), and the initial temperature T0¼ 15�C. The
following data of material coefficients suitable for kaolin material were

taken for numerical calculus

�m ¼ 6:04	10�8ðkg sm�3Þ �T ¼ 1:7	10�3ðWm�1 K�1Þ

cX ¼ 3:06 ðJ kg�1
Þ cT ¼ 0:52 ðJ kg�1 K�1Þ

�x ¼ 9:64	10�6ðkgm�2 sÞ �T ¼ 40 ðkgm2 s�1 K�1Þ

cv ¼ 23:3	105 ðJ kg�1K�1Þ l ¼ 2000 ðkJ kg�1
Þ

�s ¼ 2600 ðkgm�3Þ a ¼ 150 ðm�1Þ

�m ¼ 8:64	10�5ðkg sm�4Þ <0 ¼ 180 ðWm�3Þ

Temperature Ta of air in the drying chamber (convective drying) was
fixed at 50�C, and the relative humidity was ’¼ 10%. Under these
conditions the wet bulb temperature reached about 35�C. In our

microwave chamber dryer, on the other hand, it is possible to fix
automatically the temperature of the upper cylinder surface, so it was
fixed to be 35�C. The temperature of air in this chamber was c.a. 20�C,

and the relative humidity ’¼ 40%.
Figure 2 illustrates the temperature distribution in the cylindrical

samples by convective drying and by microwave drying.
The plots present the isolines of constant temperatures of given

values. Note that the bottom base of the cylinder is placed on a plate

impermeable to moisture flow but conductive for heat. The upper base
and the lateral surfaces of the cylinder are open, so the heat and mass
exchange with the ambient air is possible through these surfaces.

In the case of convective drying, the cylinder is assumed to be

continuously heated from the hot ambient air, however, due to
evaporation of moisture and escaping of vapor from the upper and
lateral surfaces, the greatest temperature occurs in the middle of the

cylinder, particularly at its bottom base (Fig. 2a). The calculations refer
to the stable drying conditions, so that the distribution of temperature is
also stable, although nonuniformly distributed through the cylinder, due

to heating from below through the impermeable for moisture plate.
A quite different distribution of temperature was obtained for

microwave drying of the cylinder. In this case the heat was generated
inside the material, proportionally to the local amount of moisture. The

propagation of microwaves was assumed to proceed in radial direction
only and with exponential attenuation term increasing with a distance. It
is obvious that the temperature of the ambient air in microwave drying is

lower than the temperature of the drying object.
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Note that the escape of heat through the upper and the lateral
surfaces of the cylinder during microwave drying is doubled, namely, due
to convection and due to transport with vapor. Because there is no vapor
escape through the bottom base of the cylinder, the temperature at this
base is greater than at the upper one. Due to attenuation of microwaves
with distance and proportionality of the heat generation to the magnitude
of local moisture content, the highest temperature appears not in the
center of the cylinder r¼ 0, but is in some other cross-section 0< r<R.
Similarly, because of asymmetry of cylinder cooling on its upper and
bottom surfaces, the highest temperature is not in the middle of the
cylinder height z¼H/2, but in some other plane 0< z<H/2.

Figure 3 presents the moisture content distribution in the cylinder
during convective drying after 60, 120, and 180min of a drying time.

This figure illustrates clearly how the dry zone moves towards the
interior of the cylinder in the course of drying. The driest area is located
at the upper corner of the cylinder, and the least dry area somewhere in
the middle of the cylinder. The upper surface is open for the moisture
exchange, similar as the lateral one. On the other hand, the bottom
surface is closed to moisture transfer, but it is warmer than the other
surfaces (see Fig. 2a). Therefore, the removal of moisture in lateral
direction is greater than in other places, and the moisture content at this
surface is a bit lower than in a slightly higher cross-section of the cylinder
(see Fig. 3c).

Figure 2. Distribution of temperature in the cylindrical samples: (a) 60-min

convective drying, (b) 60-min microwave drying, (c) 180-min microwave drying.
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Figure 4 presents the distribution of moisture content distribution in
the cylinder by microwave drying after 60, 120, and 180min of a
drying time.

The distribution of moisture in this kind of drying is quite similar to
that by convective drying, however, is more uniform. This is evidenced by

Figure 3. Distribution of moisture content (in % of initial moisture) in the

cylindrical sample by convective drying: (a) 60min, (b) 120min, (c) 180min.

Figure 4. Distribution of moisture content (in % of initial moisture) in the

cylindrical sample by microwave drying: (a) 60min, (b) 120min, (c) 180min.
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the fact that the isolines are less dense than in convective drying. Another
difference is visible at the bottom of the cylinder. In this place the
moisture removal is the slowest by microwave drying. This was not the
case of convective drying. Besides, the drying rate is greater in microwave
than in convective drying.

DRYING INDUCED STRESSES

Having determined the distributions of temperature and moisture
content, one can calculate the distribution of stresses. The stresses have to
satisfy the equilibrium equations, which in the axial symmetry take the
form

@�rr
@r

þ
@�rz
@z

þ
�rr � �’’

r
¼ 0 ð15aÞ

@�rz
@r

þ
�rz
r
þ
@�zz
@z

¼ 0 ð15bÞ

The stresses are related to the strains as follows:

�rr ¼ 2M"rr þ A"� 3K"ðTX Þ ð16aÞ

�’’ ¼ 2M"’’ þ A"� 3K"ðTX Þ ð16bÞ

�zz ¼ 2M"zz þ A"� 3K"ðTX Þ ð16cÞ

�zr ¼ 2M"zr ð16dÞ

where M and A are the coefficients equivalent to Lame constants in the
theory of elasticity, 3K¼ 2Mþ 3A, and

"ðTXÞ ¼ �ðTÞðT � T0Þ þ �ðXÞðX � X0Þ ð17Þ

denotes the thermal-moist strain, with �(T ) and �(X ) being the coefficients
of thermal and moist expansion (or shrinkage).

The geometrical relations for axial symmetry are:

"rr ¼
@ur
@r

, "’’ ¼
ur

r
, "zz ¼

@uz
@z

, "rz ¼
1

2

@ur
@z

þ
@uz
@r

� �
ð18Þ

with

" ¼ "rr þ "’’ þ "zz ¼
1

r

@

@r
ðrurÞ þ

@uz
@z

¼ 0 ð19Þ
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being the volumetric strain, and ur, uz denote the displacements in radial
and axial directions, respectively.

Substituting the physical relations from Eq. (16a) to Eq. (16b) into
the equations of force equilibrium (15a) and (15b), we obtain the system
of two coupled equations for determination of displacements ur and uz

Mr2ur þ
@

@r
ðM þ AÞ"� 3K"ðTXÞ
� �

¼ M
ur

r2
ð20aÞ

Mr2uz þ
@

@z
ðM þ AÞ"� 3K"ðTXÞ
� �

¼ 0 ð20bÞ

where r
2 denotes the Laplace operator in cylindrical coordinates (see

Eq. (6)).
In order to solve this system of equations explicitly, the following

boundary conditions are assumed:

– Zero-valued stresses at the free surfaces of the cylinder, that is

�rr r¼Rj ¼ 0, �zz z¼Hj ¼ 0 ð21aÞ

– Zero-valued displacements at the bottom and in the center of the
cylinder, that is

ur r¼0j ¼ 0, uz z¼0j ¼ 0 ð21bÞ

The stresses arise when the temperature and/or moisture content are
distributed nonuniformly. We have assumed uniform distribution of
temperature and moisture content at the beginning of a drying process,
and this means the stress-free initial state of the cylinder.

The finite element procedure of Galerkin type was applied to
numerical calculus of displacements, strains, and stresses. In our con-
siderations we are interested mostly in comparison of stresses generated
by convective and microwave drying. This issue will be illustrated on the
circumferential stresses �’’.

Figure 5 visualizes the stress distribution in the longitudinal plane
(r, z) of the cylinder. The lines perform the circumferential stresses of the
same value (stress-isolines).

It is seen from this figure that stresses are tensional at the surfaces
where the removal of moisture takes place and the shrinkage of dried
material occurs. As the cylinder as a whole has to be in equilibrium, the
tensional stresses have to be balanced by the compressive stresses in the
core of the cylinder. The neutral (zero-valued) line separates the areas of
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tensional and compressive stresses. The most complicated and of greatest

values state of stress appears in the upper corner of the cylinder. The

material placed in this corner is tensed simultaneously in r (radial) and z

(longitudinal) directions. It is obvious that a destruction of the material

will proceed in this place first.
Mapping of the stress distribution is quite similar in the cylinders

dried convectively and by microwaves. However, microwave drying

generates weaker stresses. This is clearly visible in Fig. 6, where

distribution of stresses along the cylinder radius in the middle height of

the cylinder (z¼H/2) at 120min drying time is presented.
The fact that microwave drying generates smaller value stresses is

even more visible in Fig. 7, where the evolution of circumferential stresses

in time at the cylinder surface (r¼R) and in its center (r¼ 0) for z¼H/2

is presented.
The weaker stresses in microwave drying follow mainly from more

uniform distribution of the moisture content (see Figs. 3 and 4). Now, we

can conclude that the volumetrically supplied heat in microwave drying

causes the diffusional and thermodiffusional fluxes of moisture to flow

in the same direction, and this results in more uniform distribution of

moisture content and smaller value stresses. This is not the case of

Figure 5. Isolines of circumferential stresses in the longitudinal section of the

cylinder sample at 120min drying time: (a) convective drying, (b) microwave

drying.
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convective drying, where the diffusional and thermodiffusional fluxes
have opposite directions.

FINAL REMARKS

The main goal of this article was to demonstrate that the
volumetrically supplied heat to the dried material results in more uniform
distribution of the moisture content during drying, and thus also in smaller
value drying-induced stresses. By convective drying, particularly when
the drying proceeds in high temperatures and small relative humidity of
the drying medium, the thermodiffusional flux of moisture blockades the
outflow of moisture due to diffusion, mainly at the boundary, and this
causes strongly nonuniform distribution of the moisture content than in
microwave drying. Therefore, the convective drying generates larger
stresses (Hasatani et al.,[4] Kowalski and Rybicki,[6] Zagrouba et al.[15]).

Figure 7. Evolution of circumferential stresses in time for z¼H/2: (a) for r¼ 0,

(b) for r¼R. (View this art in color at www.dekker.com.)

Figure 6. Distribution of circumferential stresses along cylinder radius for

z¼H/2 at 120min drying time. (View this art in color at www.dekker.com.)
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When the weaker stresses are generated during drying a better quality
dry product is obtained from the mechanical standpoint. In this context,
microwave drying has the predominance over the convective drying.

NOMENCLATURE

Symbols

A Area of evaporation (m2)
A Bulk elasticity constant (MPa)
cT Thermodiffusion coefficient (m2/K s2)
cX Diffusion coefficient (m2/s2)
cv Specific heat per unit mass of dry body (J/kgK)
H Height of the cylinder (m)
K Volumetric modulus of elasticity (MPa)
l Latent heat of evaporation (J/kg)
M Shear elasticity constant (MPa)
q Heat flux (W/m2)
r Radial coordinate (m)
R Radius of the cylinder (m)
S Total entropy (J/kgK)
sm Entropy of moisture (J/kgK)
T Temperature (K)
t Time (s)
ur, uz Displacements in radial and axial directions (m)
W Moisture flux (kg/m2 s)
X Moisture content (dry basis) (L)
x Molar vapor content in air (L)
z Axial coordinate (m)

Greek Letters

� Attenuation factor (L/m)
�m Coefficient of the convective mass exchange (kg s/m4)
�T Coefficient of the convective heat exchange (W/m2K)
�T Coefficient of thermodiffusion (kg/m2K s2)
�x Coefficient of diffusion (kg/m2 s2)
"ij Strain tensor (L)
�(T ) Coefficient thermal expansion (L/K)
�(X) Coefficient moist expansion (L)
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�m Mobility coefficient (kg s/m3)
�T Effective thermal conductivity (W/mK)
� Moisture potential (J/kg)

Internal source of heat (W/m3)
�ij Stress tensor (MPa)
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