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Experimental and Numerical Study of Solidification
Process in Unsaturated Granular Packed Bed
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The solidification process in unsaturated granular packed beds is investigated theoretically and numerically. The
water transport to the solidification interface, that is, freezing front, plays an important role on solidification in
unsaturated granular packed beds. It is found that the rate of the absorption of water into the frozen layer depends
on the freezing heat flux and the water saturation at the solidification interface. As a result, ice content in the frozen
layer is related to the rate of the absorption of water and the freezing heat flux. The one-dimensional solidification
model associated with phase change conditions and the coordinate transformation techniques for the moving
boundary problem are completely presented to calculate the temperature and water saturation distributions and
the interface position. Later, the predicted results are compared with experimental results obtained using granular
packed beds composed of glass beads and water.

Nomenclature
cp = specific heat at constant pressure, J/kgK
d = particle size, m
dW/dt = rate of absorption of water, kg/m2s
fw = water flow rate, kg/m2s
h = heat transfer coefficient, W/m2K
K = permeability, m2

L = latent heat, J/kg
p = pressure, Pa
q f = freezing heat flux, J/m2s
R = position of solidification interface, m
s = water or ice saturation
sir = irreducible saturation
T = temperature, ◦C
t = time, s
u = velocity, m/s
x = horizontal direction coordinate, m
ε = porosity
η, ς = coordinate transformation
λ = effective thermal conductivity, W/mK
ρ = density, kg/m3

Subscripts

b = brine or solidification interface
c = capillary
e = effective
i = ice
p = particle
r = relative
s = surface of saturation
w = water or wet
x = x component
0 = initial, reference

I. Introduction

T HE phenomenon of solidification or freezing process in un-
saturated porous media is widely encountered in nature and
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in many engineering systems. Some of the specific applications in-
clude pipeline transport in permafrost regions and cryosurgery, as
well as in the transportation of coal in cold weather, ice accretion on
vehicles and static structures, solidification of alloys, food process-
ing, chemical processes, cryopreservation of engineering tissues,
and many others.

A similar problem, that is, the simultaneous heat and mass transfer
problem in porous media based on Whitaker’s theory, has been stud-
ied by many authors including Whitaker and Chou,1 Plumb et al.,2

Udell,3 Kaviany and Mittal,4 Rogers and Kaviany,5 and Ratanadecho
et al.6−8

Up to the present time, the related problem of solidification in
porous media in the absence of an unsaturated state has been investi-
gated both experimentally and numerically by many researchers and
up to date reviews are available: Hashemi and Sliepcevich,9 Frivik
and Comini,10 Sparrow and Broadbent,11 Weaver and Viskanta,12

and Chellaiah and Viskanta.13

Only a very limited amount of analytical and experimental work
on phase change heat transfer in unsaturated porous media has been
reported, and understanding of the phenomenon is incomplete. At
macroscopic level, there exist four distinct phases (porous matrix,
ice, water, and air) within any representative elementary volume of
the unsaturated porous media system.

When solving a moving boundary problem, that is, solidification
process of unsaturated porous media, complications arise due to the
motion of the solidification interface with the phase transformation
and the absorption of water at this interface. As such, the position
of the interface is not known a priori, and the domains over which
the energy equations are solved vary. There exists a discontinuity
in the temperature gradient, as well as liquid saturation gradient
at the solidification interface. Furthermore, during solidification in
unsaturated porous media, the mechanism of the water transport to
the interface and the growth of the segregated ice must be clearly
investigated. Namely, the water in the unfrozen layer is absorbed
to the interface due to capillary and osmotic actions so that ice
content in the frozen layer increases, and a segregated ice layer often
grows between frozen and unfrozen layers. In this paper, the first
systematical study on solidification process in unsaturated porous
media associated with water transport to the interface is described.

The purpose of this study is to report on theoretical and exper-
imental studies of the solidification process in unsaturated porous
media, that is, a granular packed bed at a fundamental level. The
results of numerical calculations and a comparison of experimen-
tal data with predictions for the temperature distribution, the water
saturation distributions, and the position of solidification interface
based on the one-dimensional model are reported. It is hoped that
this study will enhance physical understanding of the solidification
process in unsaturated porous media such as artificial freezing of
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Fig. 1 Experimental apparatus: 1) packed bed, 2) cooling heat
exchanger, 3) insulator, 4) cooling tank with refrigerator, 5) recorder,
6) computer, and 7) thermocouples.

ground for mining and construction purposes, ablation of thermal
shields, degradation of permafrost, and purposeful ground freezing
during geotechnical endeavors.

II. Experimental Apparatus
Figure 1 shows the apparatus where solidification experiments

are performed, a rectangular test cell with inside dimensions of
130-mm height, 110-mm length, and 50-mm depth. The horizontal
top and bottom walls and the vertical front and back walls are made
of acrylic resin. The entire test cell is covered with 60-mm-thick
Styrofoam on all sides to minimize the effect of heat losses and
condensation of moisture at the walls. The test cavity is filled with
a mixture of water and uniform size spherical glass beads with a di-
ameter of 0.15 mm (porous matrix). The vertical front wall, which
serves as the heat source, is a multipass heat exchanger. The heat
exchanger is connected through a valve system to a constant tem-
perature bath, where an ethylene glycol–water solution is used as
the cooling medium.

Throughout the experiments, the test cell is set up in a constant
room temperature held at 10◦. Measurement of temperature distribu-
tions inside the test cell is made with 10 Cu–Co thermocouples with
diameter of 0.2 mm. All thermocouples are positioned such that the
temperatures are measures along the horizontal centerplane of the
test cell at each 10-mm interval. The thermocouples are connected
to the data logger and a computer through which the temperatures
could be measured and store at preselected time intervals. The po-
sition of solidification interface in the packed bed is determined by
interpolating the fusion temperature from the thermocouple reading.

The water or ice saturations in the packed bed are defined as the
fractions of the volume occupied by water or ice to the volume of
the pores. They are obtained by weighing the dry and wet mass of
the sample, which is cut out in volume of about 10 mm3 at the end
of each run.

The water saturation formula can be described in the following
form:

s = ρp(1 − ε)(mw − md)

ρwεmd
(1)

where mw and md are the wet and dry masses of the sample,
respectively.

During the solidification experiments, the uncertainty of the data
might be due the variations in humidity, room temperature, and hu-
man errors. The calculated uncertainties in all tests are less than
2.85%. Additionally, a possible error in the predicted results might
be due to the uncertainties in the calculated effective thermal con-
ductivity and the permeability of the porous media.

III. Analysis of Water Transport Due to Solidification
Figure 2 shows typical profiles of ice and water saturations during

the solidification process in an unsaturated granular packed bed. It
is observed that the profiles are not uniform, that is, ice saturation
is increased and water saturation is decreased as compared with the
initial state. This means the water in the unfrozen layer is absorbed
to the solidification interface or freezing front during the solidifi-
cation process. From a macroscopic point of view, the water trans-
port associated with phase change conditions due to solidification is
discussed.

Figure 3 shows the typical moisture characteristic curve (the re-
lationship between capillary pressure pc and water saturation s) for
the different particle sizes obtained from previous experiments.8 In
the case of the same capillary pressure, a small particle size corre-
sponds to higher water saturation. Now the case where two packed
beds having the same water saturation and different particle sizes at
the interface are adjusted as shown in Fig. 4 is considered. Because
the capillary pressure has the same value at the interface between
two beds, the water should be moved from the coarse bed to the fine
bed. The water transport due to solidification may be considered
as similar to this phenomenon. Namely, the freezing of the water
around each particle in unsaturated packed bed allows gaps between
pores to be narrower so that, to keep the same capillary pressure at
the solidification interface, the water in the unfrozen layer should
be absorbed to the interface. In this study, we obtain the rate of the
absorption of water by the following procedure.

Consider an energy balance at the interface or freezing front. The
motion of the frozen layer is then given by

ρi Lεsib
dR

dt
= λi

∂T

∂x

∣
∣
∣
∣

x = R

− λw

∂T

∂x

∣
∣
∣
∣

x = R

= q f (2)

where λ is the effective thermal conductivity based on the assump-
tion of thermal equilibrium between phase change material (water
or ice) and the porous matrix (glass beads) and depends on water

Fig. 2 Schematic profile of ice and water saturations due to
solidification.

Fig. 3 Typical relationship between capillary pressure and water
saturation.
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Fig. 4 Schematic diagram showing water transport at the interface
between different porous beds.

Fig. 5 Relationship between the rate of the absorption of the water
and the freezing heat flux.

or ice saturation. The right-hand term in Eq. (2) is the heat flux of
freezing. The rate of the absorption of water, which is related to
the motion of frozen layer and the water and ice saturations at the
interface, is given by

dW

dt
= ε(ρi sib − ρwswb)

dR

dt
(3)

Equate Eqs. (2) and (3), which yields the following equation:

dW

dt
= (ρi sib − ρwswb)

ρi Lsib

(

λi
∂T

∂x

∣
∣
∣
∣

x = R

− λw

∂T

∂x

∣
∣
∣
∣

x = R

)

(4)

where the rate of the absorption of water due to solidification is
obtained from measuring the heat flux of freezing and the water and
ice saturations at the interface.

Figure 5 shows the relationship between the rate of the absorption
of water (dW /dt), and the freezing heat flux q f as a parameter of wa-
ter saturation at the interface, swb. The rate of the absorption of water
is increased with increasing in freezing heat flux. This is because a
higher freezing heat flux leads to a faster change of porous struc-
ture due to solidification, that is, it leads to a larger water saturation
difference at the interface between the frozen and unfrozen layers
to keep the same capillary pressure. Also, the rate of the absorption
of water depends on water saturation at the interface; however, the
relationship is more complex. Figure 6, based on Fig. 5, shows the
effect of swb on dW /dt . It is found that the rate of the absorption of
water takes the maximum value near the water saturation of 0.3 and

Fig. 6 Relationship between the rate of the absorption water and the
water saturation at the interface.

Fig. 7 Physical model for solidification process.

it decreases beyond or below its saturation. This may be explained
by considering that the difference in water saturation among particle
sizes becomes the most remarkable near the water saturation of 0.3,
as shown in Fig. 3.

IV. Analysis of Solidification Process in Unsaturated
Granular Packed Bed

In Fig. 7, the modeled physical system consists of two layers,
namely, frozen layer and unfrozen layer. Inside the frozen layer,
only heat transport takes place, whereas inside the unfrozen layer
both heat and water transport can occur. Initially, the system is at a
uniform temperature greater than or equal to the fusion temperature
of a liquid. At time t > 0, a uniform temperature less than the fusion
temperature is imposed on the left wall. Solidification is initiated at
this wall, and the solidification interface moves from left to right.
The following simplifying assumptions are made in the analysis:

1) The one-dimensional analysis for solidification in unsaturated
granular packed bed is performed. The solidification interface is a
planar due to the good control of the imposed temperature gradient
in the solidification experiment.

2) When the energy balance equation (2) is considered at the
solidification interface, it predicts the position of solidification in-
terface and is based on an energy balance of an infinitesimal control
volume along the planar interface.

3) The porous medium is isotropic and homogeneous and has
uniform porosity. Therefore, the volume average model for isotropic
and homogeneous material can be used in the theoretical modeling
and analysis.

4) The water flow in the unfrozen layer is governed by Darcy’s
law.
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5) The volumetric change due to solidification is negligible.
6) The natural convection is absent.
7) The frozen–unfrozen interface is clearly defined, that is, the

phase-change material has a well-defined fusion temperature.
8) There is thermal equilibrium between the phase-change mate-

rial and the porous matrix. This may be the case when the porous
matrix has a slightly larger thermal conductivity than the phase-
change material, and the interphase heat transfer can be properly
neglected.

Water Transport Equation
The water conservation equation in the unfrozen layer based on

Darcy’s law is given as

ρw

∂s

∂t
= −∂ fw

∂x
= − ∂

∂x
[ρwuw]

or in another form,

ρw

∂s

∂t
= −∂ fw

∂x
= −ρw

∂

∂x

[
K Krw

µw

∂pc

∂x
− ρwg

]

(5)

The system of the conservation equations obtained for the multi-
phase transport mode requires constitutive equations for relative
permeabilities Krw , capillary pressure pc, and capillary pressure
functions (Leverett functions) J (se). A typical set of constitutive
relationships for the liquid and gas system is given by

Krw = s3
e (6)

where se is the effective water saturation associated with the irre-
ducible water saturation sir and is defined by

se = (s − sir )/(1 − sir ) (7)

The capillary pressure pc is further assumed to be adequately repre-
sented by Leverett’s well-known J (se) functions. The relationship
between the capillary pressure and the water saturation is defined
by using Leverett functions J (se),

pc = (

σ
/√

K/ε
)

J (se) (8)

where the Leverett functions J (se) is represented by (see
Ratanadecho et al.8)

J (se) = 0.325[1/se − 1]0.217 (9)

Energy Conservation Equations
The energy conservation equations in the frozen and unfrozen

layers are given, respectively, by

∂

∂t
[(ρcp)T i Ti ] = ∂

∂x

[

λi
∂Ti

∂x

]

(10)

∂

∂t
[(ρcp)T wTw] = ∂

∂x

[

λw

∂Tw

∂x

]

− ∂(cpw fwTw)

∂x
(11)

where (ρcp)T is the effective heat capacitance of the water, ice, and
matrix mixture and λ is the effective thermal conductivity depending
on water or ice saturation. Under the thermal equilibrium condition,
the effective heat capacity is given as

(ρcp)T, j = ρ j cp, jεs + ρpcpp(1 − ε), j = i, w (12)

where the subscript j represents either the frozen layer or the un-
frozen layer. Based on the experimental results by Kiyohashi et al.,14

the effective thermal conductivity λ is represented as a function of
water or ice saturation:

λ j = λmax, j/[1 + A j exp(−5.95s j )], j = i, w (13)

Table 1 Constant values used in Eq. (16)

Swb C D

0.15 2.0 0.32
0.25 2.0 0.79
0.30 2.0 0.88
0.35 2.0 0.73
0.45 2.0 0.63
0.50 2.0 0.51
0.70 2.0 0.31

where constant A and λmax corresponding to the unfrozen and frozen
layers are

Ai = 7.06, Aw = 3.78, λmax,i = 1.35, λmax,w = 0.8

(14)

The motion of frozen layer or solidification interface is represented
by

ρi Lεsib
dR

dt
= λi

∂T

∂x

∣
∣
∣
∣

x = R

− λw

∂T

∂x

∣
∣
∣
∣

x = R

(15)

Note that the ice saturation at the interface, sib depends on the rate
of the absorption of water, and the freezing heat flux, and the water
saturation at the interface, swb, and is approximated by the following
equation, which is obtained by applying spline interpolation to the
experimental results as shown in Fig. 5:

dW

dt
= ε(ρi sib − ρwswb)

dR

dt
= Cq D(swb)

f (16)

where the constant values of C and D for different values of swb

used in Eq. (16) are shown in Table 1.
Equate Eqs. (15) and (16), which yields the following equation:

sib = swb

/
ρi

ρw

[

1 −
(

L
dW

dt

/

q f

)]

= swb

/
ρi

ρw

(

1 − LCq D
f

q f

)

(17)

The other boundary conditions and the initial conditions are

t = 0, x ≥ 0 : si = s0

sw = s0, Ti = 0, Tw = T∞

t > 0, x = 0 : q = h(Ts − Tb)

t > 0, x = R0 :
∂ fw
∂x

= 0,
∂q

∂x
= 0 (18)

V. Coordinate Transformation
In solving a moving boundary problem including phase change,

complications arise due to the motion of the solidification interface.
In this study, the governing equations of water and heat transport
were solved by using a coordinate transformation technique based
on a boundary fixing method coupled with implicit time schemes.15

The detailed coordinate transformation technique is presented as
follows.

In Frozen Layer
For the coordinate transformation in the frozen layer, we use the

following coordinate system:

η = x/R(t), 0 ≤ x ≤ R(t) (19)

where R(t) is distance between the cooling surface and solidifica-
tion interface. With use of the coordinate transformation technique,
the physical space (x , t) is then transformed to the mapping space
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[η(x, t), t]. The differential operators with the coordinate transfor-
mation are mathematically related to the following equations:

∂

∂x
= ∂

∂η

∂η

∂x
= 1

R

∂

∂η
(20)

∂

∂t
= ∂

∂η

∂η

∂t
+ ∂

∂t
= ∂

∂t
− η Ṙ

R

∂

∂η
(21)

where Ṙ is the time derivative of the solidification interface. Ac-
cording to Eqs. (20) and (21), the energy equation in the frozen
layer [Eq. (10)] can be then transformed to the following equation:

∂

∂t
[(ρcp)T,i Ti ] = η Ṙ

R

∂

∂η
[(ρcp)T,i Ti ] + 1

R2

∂

∂η

[

λi
∂Ti

∂η

]

(22)

In Unfrozen Layer
For the coordinate transformation in the unfrozen layer, we use

the following coordinate system:

ς = x − R(t)

R0 − R(t)
, R(t) ≤ x ≤ R0 (23)

The differential operators with coordinate transformation are also
mathematically related to the following equations:

∂

∂x
= ∂

∂ς

∂ς

∂x
= 1

R0 − R

∂

∂ς
(24)

∂

∂t
= ∂

∂ς

∂ς

∂t
+ ∂

∂t
= ∂

∂t
− Ṙ(1 − ς)

(R0 − R)

∂

∂ς
(25)

According to Eqs. (24) and (25), the water transport and energy
equations in the unfrozen layer [Eq. (11)] can be transformed to the
following equations, respectively:

ε
∂s

∂t
= ε

Ṙ(1 − ς)

R0 − R

∂s

∂ς
− 1

(R0 − R)2

∂

∂ς

[
K Krw

µw

(
∂pc

∂ς

)]

(26)

∂

∂t
[(ρcp)T,wTw] = Ṙ(1 − ς)

(R0 − R)

∂

∂ς
[(ρcp)T,wTw]

− 1

R0 − R

∂

∂ς
[cpw fwTw] + 1

(R0 − R)2

∂

∂ς

[

λw

∂Tw

∂ς

]

(27)

At Solidification Interface
The motion of solidification interface [Eq. (15)] can be also trans-

formed to the following equation:

ρi Lεsib
dR

dt
= λi

R

∂T

∂η

∣
∣
∣
∣

x = R

− λw

R0 − R

∂T

∂ς

∣
∣
∣
∣

x = R

(28)

VI. Numerical Schemes
In this study, the method of finite differences based on the notion

of the control volumes16 is used. The generalized system of the non-
linear equations (22) and (26–28) is integrated over typical control
volumes. After integration over each control volume within compu-
tational mesh, a system of nonlinear equations results whereby each
equation can be cast into a numerical discretization of the general-
ized conservation equation.

Heat transport equation in frozen layer:

(ρcp)
n + 1
T i,i T n + 1

i,i − (ρcp)
n
T i,i T

n
i,i

�t

= η Ṙ

R

(ρcp)
n + 1
T i,i + 1

2
T n + 1

i,i + 1
2

− (ρcp)
n + 1
T i,i − 1

2
T n + 1

i,i − 1
2

�η

+ 1

R

1

�η

[

λn + 1
i,i + 1

2

(
T n + 1

i,i + 1 − T n + 1
i,i

R�η

)

− λn + 1
i,i − 1

2

(
T n + 1

i,i − T n + 1
i,i − 1

R�η

)]

(29)

Water and heat transport equations in unfrozen layer:

ε
sn + 1

i − sn
i

�t
= ε

Ṙ(1 − ς)sn + 1
i + 1

2
− sn + 1

i − 1
2

�ς

− 1

(R0 − R)

1

�ς

[
K K n + 1

rw,i + 1
2

µw

(
pn + 1

c,i + 1 − pn + 1
c,i

(R0 − R)�ς

)

−
K K n + 1

rw,i − 1
2

µw

( pn + 1
c,i − pn + 1

c,i − 1
2

(R0 − R)�ς

)]

(30)

(ρcp)
n + 1
T w,i T

n + 1
w,i − (ρcp)

n
T w,i T

n
w,i

�t

= Ṙ(1 − ς)

R0 − R

(ρcp)
n + 1
T w,i + 1

2
T n + 1

w,i,i + 1
2

− (ρcp)
n + 1
T w,i − 1

2
T n + 1

w,i − 1
2

�ς

+ 1

(R0 − R)

1

�ς

[

λn + 1
w,i + 1

2

(
T n + 1

w,i + 1 − T n + 1
w,i

(R0 − R)�ς

)

− λn + 1
w,i − 1

2

(
T n + 1

w,i − T n + 1
w,i − 1

(R0 − R)�ς

)]

− 1

R0 − R

[

(cpw fw)i T
n + 1
w,i − (cpw fw)i − 1T n + 1

w,i − 1

]

�ς
(31)

where n is the current iteration index and n + 1 is the new iteration
index.

Solidification interface equation:

ρi Lεsib
3Rn + 1 − 4Rn − Rn − 1

2�t

= λi

3T n + 1
i,end − 4T n + 1

i,end − 1 + T n + 1
i,end − 2

2Rn + 1�η

∣
∣
∣
∣

x = R

− λw

−3T n + 1
w,0 + 4T n + 1

w,1 − T n + 1
w,2

2
(

R0 − Rn + 1
)

�ς

∣
∣
∣
∣
∣

x = R

(32)

Finally, to obtain values for all stage variables at the marching time,
the system of nonlinear equations must be resolved. This proce-
dure is carried out in two distinct stages, including outer and in-
ner iteration phases. During the outer iteration phase, the system
of the nonlinear equations is linearized according to the standard
Newton–Raphson method. During the inner iteration phase, the sys-
tem is solved by employing the standard successive overrelaxation
method.

VII. Results and Discussion
The predicted results for one-dimensional solidification in the un-

saturated granular packed bed are compared with the experimental
results. Typical ice saturation and water saturation profiles for dif-
ferent initial water saturations and different cooling temperatures
are shown in Fig. 8.

Figure 8a shows the saturation profiles in the porous packed bed
for the case of s0 = 0.4 and Tb = −6◦C as a parameter of elapsed
time. According to the explanation in Sec. III, the ice saturation in the
frozen layer is increased, while the water saturation in the unfrozen
layer is decreased in comparison with the initial state. It is found
that the water transport due to capillary action plays an important
role for the solidification process. As the solidification progresses,
the freezing heat flux will be decreased due to the increasing of
thermal resistance of the frozen layer. Accordingly, in Fig. 8a a
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a)

b)

c)

Fig. 8 Predicted and experimental profiles for ice and water satura-
tions at various conditions: a) s0 = 0.4 and Tb =−−6◦C, b) s0 = 0.4 and Tb =
−−35◦C, and c) s0 = 0.15 and Tb = −−6◦C.

location of lower freezing heat flux (x = 5.8 cm) results in a higher
ice saturation, in spite of the lower rate of the absorption of water,
as referred to Fig. 5. This is because the freezing heat flux affects
both the rates of the absorption of water and the motion of frozen
layer. Specifically, a lower freezing heat flux leads to a lower rate
of absorption of water and a slower progressing rate of the frozen
layer at the same time. Nevertheless, depending on the freezing
heat flux these two rates have a contrary effect on ice saturation at
the solidification interface. As the freezing heat flux is increasing,
particularly at the early stages of the solidification process (about
5 h), the progressing rate of the frozen layer is superior to the rate
of the absorption of water and the ice saturation is decreasing. The
calculated results of ice and water saturations in the packed bed are
in agreement with the experimental results for solidification process.

Figures 8b and 8c show the saturation profiles as a parameter of
elapsed time for the case of s0 = 0.4, Tb = −35◦C and s0 = 0.15,
Tb = −6◦C, respectively. It is evident from Figs. 8b and 8c that
the profiles of ice and water saturation in both cases become almost
uniform over the packed bed. This is because the water transport does
not play an important role on the solidification process. Comparing
with the case of Fig. 8a, we can see that the freezing heat flux is very
high in the case of Fig. 8b, whereas a lower rate of water absorption
occurs in the case shown in Fig. 8c. This is because the progressing
rate of the frozen layer is superior to the rate of water absorption

Fig. 9 Comparison between the predicted and experimental temper-
ature profiles for the cases of s0 = 0.15 and s0 = 0.4.

Fig. 10 Predicted and experimental solidification interface for the
cases of s0 = 0.15 and s0 = 0.4.

and the effect of the water transport due to the solidification process
is not remarkable.

Next, Fig. 9 shows the temperature profiles in the packed bed for
the case of s0 = 0.4 and s0 = 0.15 with Tb = −6◦C as a parameter of
elapsed time. In general, the temperature in the packed bed drops
faster in the case of s0 = 0.4 compared with the case of s0 = 0.15.
This is because the thermal conductivity in frozen layer becomes
higher in the former case as a result of higher ice saturation.

Figure 10 shows the time variation of the frozen layer thickness
for the case s0 = 0.4 and s0 = 0.15 with Tb = −6◦C. It is observed
that the thickness of the case of s0 = 0.4 becomes thinner in the early
stages of the solidification process, but after that it becomes thicker
compared with that of s0 = 0.15. These results may be explained by
considering the latent heat of freezing and thermal conductivity in
the frozen layer. In general, a higher ice saturation corresponding
to the case of s0 = 0.4 needs more latent heat per unit volume of the
layer and at the same time leads to a higher thermal conductivity.
That is, in the early stages of the solidification process, a higher ice
saturation results in a thinner thickness in comparison to the case
of s0 = 0.15 due to the effect of latent heat of freezing as explained
earlier. However, at the long stages of the solidification process, the
thickness becomes thicker due to the higher thermal conductivity.
The calculated results are in agreement with the experimental results
for the solidification process.

VIII. Conclusions
The solidification process in an unsaturated granular packed bed

has been investigated theoretically and numerically, by the consid-
eration of water transport toward the solidification interface due to
capillary action. It is found that the rate of the absorption of water
in the frozen layer due to the solidification is related to the freez-
ing heat flux and the water saturation at the solidification interface.
Also, it is found that the ice saturation in the frozen layer becomes
higher for a higher rate of water absorption and lower freezing heat
flux.

The one-dimensional solidification model associated with phase-
change conditions and the coordinate transformation techniques for
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a moving boundary problem are completely presented to calculate
the rate of absorption of water in the frozen layer, the temperature
and water saturation distributions, and the interface position. It is
found that the predicted results are in agreement with the experi-
mental results.
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