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Abstract

A numerical study is made of the freezing of water-saturated porous media in a rectangular cavity subjected to multiple heat sources with different
temperature. Focus is placed on establishing a computationally efficient approach for solving multi-dimensional moving boundary problem in a
two-dimensional structured grids. Preliminary grids are first generated by an algebraic method, based on a transfinite interpolation method, with
subsequent refinement using a PDE mapping (parabolic grid generation) method. A preliminary case study indicates successful implementation
of the numerical procedure. A two-dimensional freezing model is validated against available analytical solution and experimental results.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Transient heat transfer problems involving melting or solidification are generally referred to as “phase change” or “moving
boundary” problems. They are an important topics which spans a broad spectrum of scientific and engineering disciplines such as
the freezing or thawing of soil, ice formation, crystal growth, aerodynamic ablation, casting of metal, food processing and numerous
others. Generally, the solution of moving boundary problem with phase transition has been of special interest due to the inherent
difficulties associated with the non-linearity of the interface conditions and the unknown locations of the arbitrary moving boundaries.
The some up to date reviews of these problems are available (Charn-Jung & Kaviany, 1992; Chellaiah & Viskanta, 1988; Frivik &
Comini, 1982; Hasan, Mujumdar, & Weber, 1991; Hashemi & Sliepcevich, 1973; Murray & Landis, 1959; Sparrow & Broadbent,
1983; Weaver & Viskanta, 1986).

In the past, a variety of conventional numerical techniques have been developed for solving these problems, including the enthalpy
(Crowley, 1978; Shamsundar & Sparrow, 1976), apparent heat capacity (Bonacina, Comini, Fasano, & Primicerio, 1973), isotherm
migration (Crank & Gupta, 1975), and coordinate transformation methods (Cheung, Chawla, & Pedersen, 1984; Hsu, Sparrow,
& Patankar, 1981; Sparrow & Chuck, 1984; Sparrow, Ramadhyani, & Patankar, 1978; Rattanadecho, 2004a, b). These methods
have been introduced by researchers mainly to overcome the difficulties in handling moving boundaries. Previous works on multi-
dimensional moving boundary problems include Duda, Malone, Notter, and Vrentas (1975), Saitoh (1978), Gong and Mujumdar
(1998), Cao, Huang, and Russell (1999), Khillarkar, Gong, and Mujumdar (2000), Chatterjee and Prasad (2000), Beckett, MacKenzie,
and Robertson (2001), and Ratanadecho, Aoki, and Akahori (2002).

Conventionally numerical methods have been widely used due to easy to handle numerical algorithms for phase change problem.
However, in numerical approximations used in this method with discontinuous coefficients, often the largest numerical errors are
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Nomenclature

a thermal diffusivity (m2/s)
Cp specific heat capacity (J/kg K)
L latent heat (J/kg)
T temperature (◦C)
t time (s)
x, z Cartesian coordinates

Greek symbols
λ effective thermal conductivity (W/m K)
φ porosity

Subscripts
f fusion
i initial
j layer number
l unfrozen
mov moving boundary
s frozen

introduced in a neighborhood of the discontinuities particularly for phase change in geometry complexity as well as boundary
condition.

The troublesome numerical errors in conventional method are effectively reduced if the grid generation and solution procedure
are separated with the discontinuities and special formulas are used to incorporate the jump conditions directly into the numerical
model. This is the main idea behind this work considering moving boundary as a parameter.

To create a computational grid in body-fitted coordinates, two basic steps required: (1) define an origin point and (2) specify the
distribution (number and spacing) of grid nodes along the edges of the geometric regions. The automatic grid generator then takes
over, and using an algebraic technique known as transfinite interpolation, creates a grid that simultaneously matches the edge node
prescription and conforms to the irregular edges of the body-fitted geometry. Grid generation by algebraic methods produces high-
quality numerical grids and allow for the very efficient integration of the thermal-flow field physics. Considering grid optimization,
the designed grid optimization-algorithm improves upon the transfinite interpolation method by carrying the grid generation process
one step further. It uses automatically generated grid as an initial approximation to a higher quality grid system derived utilizing the
technique of PDE grid generation. This technique offers advantages over purely algebraic methods:

• Good control over the skewness and spacing of the derived grid on surface interiors, while simultaneously allowing complete
control over the grid spacing (node distribution) on surface edges as well as moving boundary.

• An ability to produce unique, stable, and smooth grid distributions free of interior maxima or minima (inflection points) in
body-fitted coordinates.

Parabolic grid generation works well with irregularly shaped geometries and can produce grids that are highly conformal with the
edges of individual computational surfaces. The means for grid generation should not be dictated by the limitations of a given specific
field solution procedure and conversely the method that determines the field should accept as input an arbitrary set of coordinate
points which constitutes the grid. In general, of course, these two operations can never be totally independent because the logistic
structure of the information, the location of outer boundaries, the nature of coordinate and the types of grid singularities are items
that have to be coordinated closely between the field solver and the grid generator (Eriksson, 1982).

Grid generation for multi-dimensional geometries using transfinite interpolation functions was studied by Coons (1967), Cook
(1974), Gordon and Hall (1973), and Ettouney and Brown (1983) successfully modeled slightly non-planar interfaces by using an
algebraic grid generation system where the interface was described in terms of univariate function.

Although grid generation is the core of most numerical algorithms for phase change problems or non-phase change problem,
little effort has been reported on phase change problems, particularly the problem which couples the grid generation algorithm with
the heat transport equations.

The present paper introduces the novel numerical approaches for freezing problems, which extend the range of initial condition
and boundary conditions in case of multiple heat sources with different temperature that can be covered. They will also permit a
continuous determination of the multi-dimensional freezing front and indicate the internal temperature distribution with a greater
degree of boundary complexity and offers the highest overall accuracies and smooth grid point distribution. Numerically, for
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generating a boundary/interface fitted coordinate system, structured grids are initialized using transfinite interpolation algebraic
techniques and the quality of structured grids can be significantly improved by applying parabolic-PDE methods. These methods
iteratively solve unsteady conduction’s equation together with moving boundary condition during the freezing process considering
conduction as the only mode of heat transfer in both the unfrozen layer and the frozen layer.

2. Modeling formulation

The two-dimensional system illustrated schematically in Fig. 1 is considered. Initially, the walls are all insulated and the rectangular
cavity is filled with a porous medium (PM) consisting of the glass beads and phase change material (PCM) in the liquid state (water),
both at the fusion temperature Tf (0 ◦C). Multiple heat sources with specified temperature (TL) are located at the top wall. At time
t = 0, the freezing process downwardly begins. The applicable differential equations for two-dimensional heat flow with constant
thermal properties for the unfrozen and frozen layers are, respectively:

∂Tl

∂t
= al

(
∂2Tl

∂x2 + ∂2Tl

∂z2

)
+
(

∂Tl

∂z

)
dz

dt
(1)

∂Ts

∂t
= as

(
∂2Ts

∂x2 + ∂2Ts

∂z2

)
+
(

∂Ts

∂z

)
dz

dt
(2)

where the last terms of Eqs. (1) and (2) result from a coordinate transformation attached to the moving boundary. In the unfrozen
layer, if internal natural convection can be neglected because the presence of glass beads minimizes the effect of natural convection
current.

Eqs. (1) and (2) are based on the following assumptions.

(1) the temperature field can be assumed to be two-dimensional,
(2) the thermal equilibrium exists between PCM and PM; this is possible when the porous matrix has a little larger thermal

conductivity than the PCM, and the interphase heat transfer can be properly neglected,
(3) properties of PM are isotropic.

The boundary conditions of Eqs. (1) and (2) are:

(a) the localized freezing condition at the top horizontal wall, the multiple heat sources with specified temperature (TL) are applied:

xll ≤ xl ≤ xlr : T = TL, xcl ≤ xc ≤ xcr : T = TL, xrl ≤ xr ≤ xrr : T = TL (3)

where various subscripts of x denote the regions for applying heat sources with strip length of 10 mm in each region. In addition,
for the case of the freezing of water-saturated porous media in a rectangular cavity subjected to multiple heat sources with
different temperature, the temperatures (TL) in each region are different.

(b) adiabatic condition: the walls are all insulated

∂T

∂x
= ∂T

∂z
= 0 (4)

(c) moving boundary condition:

Fig. 1. Physical model.
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The moving boundary condition (Stefan condition), which is obtained from a consideration of the energy balance at the
interface between the frozen layer and unfrozen layer provides following equation:

(
λs

∂Ts

∂z
− λl

∂Tl

∂z

)[
1 +

(
∂zmov

∂x

)2
]

= ρsLs
∂zmov

∂t
(5)

where ∂zmov/∂t is the velocity of fusion front or freezing front, and Ls is the latent heat of fusion. To avoid changes in the physical
dimensions as the freezing front progresses, ρs = ρl will be specified. In this study, the thermal conductivity, λl is bulk-average
value for the glass beads and water and λs is bulk-average value for the glass beads and ice.

3. Grid generation technique

Generally, two types of structured grid generation are currently in use. They are algebraic method, i.e., transfinite interpolation
method and PDE methods. Transfinite interpolation provides a relatively easy way of obtaining an initial grid that can be refined
and smoothed by other techniques, whether algebraic, PDE method.

The main idea behind this work, prior to generation of grids by PDE methods, it is preferable to obtain first preliminary grids
using the algebraic method, i.e., transfinite interpolation technique. The combined transfinite interpolation and PDE method is used
to achieve a smoother grids point distribution and boundary point discontinuities are smoothed out in the interior domain.

3.1. Transfinite interpolation (TFI)

The method of constructing a two-dimensional boundary-conforming grid for a system is a direct algebraic approach based on the
concept of TFI. In this method, no partial differential equations are solved to obtain the curvilinear coordinates, and the same system
is used for the entire domain. The algebraic technique can be easier to construct than PDE methods, and gives also easier control
over grid characteristics such as orthogonality and grid point spacing. However, this method is sometime criticized for allowing
discontinuities on the boundary to propagate into the interior and for not generating grids as smooth as those generated by PDE
method.

The technique used for transfinite interpolation here is a significant extension of the original formulation by Gordon and Hall
(1973). It possible to initially the generate global grid system with geometry specifications only on the outer boundaries of the
computation domain and yet to obtain a high degree of local control.

Fig. 2 illustrates the present method of constructing a two-dimensional boundary-conforming grid for a system, which is a direct
algebraic approach based on the concept of transfinite or multivariate interpolation. It is possible to initially generate global single
plane transformations with geometry specifications only on outer boundaries of the computational domain.

Let f (u, w) = (x(u, w), z(u, w)) denote a vector-valued function of two parameters u, w defined on the region u1 ≤ u ≤ umax,
w1 ≤ w ≤ umax. This function is not known throughout the region, only on certain planes (Fig. 2). The transfinite interpolation
procedure then gives the interpolation function f(u,w) by the recursive algorithm:

f
(1)
(u,w) = A1(u)f(1,w) + A2(u)f(umax,w), f(u,w) = f

(1)
(u,w) + B1(w)[f(u,1) − f

(1)
(u,1)] + B2(w)[f(u,wmax) − f

(1)
(u,wmax)] (6)

Fig. 2. The parametric domain with f(u,w) specified on planes of constant u, w.
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where A1(u), A2(u), B1(w) and B2(w) are defined by the set of univariate blending functions, which only have to satisfy the conditions:

A1(1) = 1, A1(umax) = 0; A2(1) = 0, A2(umax) = 1; B1(1) = 1, B1(wmax) = 0; B2(1) = 0, B2(wmax) = 1

(7)

Further, the general form in algebraic equations can be defined as:

A1(u) = umax − u

umax − 1
, A2(u) = 1 − A1(u); B1(w) = wmax − w

wmax − 1
, B2(w) = 1 − B1(w) (8)

The grid motion defined from a moving boundary motion is modeled using a Stefan condition (Eq. (5)) with a transfinite mapping
technique.

The boundary fitted grid generation mapping discussed in this section forms the basis for the interface-tracking mapping. However,
the mapping now must match the interface curve on the interior of physical domain in addition to fitting the outer physical boundary.
In addition, the system must be adaptive since the grid lines must change to follow the deforming interface while maintaining as
much smoothness and orthogonality as possible.

3.2. PDE method

In the proposed grid generation mapping, all grids discussed and displayed have been couched in terms of finite difference
formulation, with the understanding that whatever non-uniform grid exists in the physical space, there exists a transformation, which
will recast it as a uniform rectangular grid in the computational space. The finite difference calculations are then made over this
uniform grid in the computational space, after which the field results are transferred directly back to the corresponding points in the
physical space. The purpose of generating a smooth grid that conforms to physical boundaries of problem is, of course, to solve
the partial differential equations specified in the problem by finite difference scheme, capable of handling general non-orthogonal
curvilinear coordinates.

Fig. 1 show that, as freezing proceeds, the freezing front denoted by zmov is formed. Due to the existence of this freezing front,
the frozen and unfrozen domains are irregular and time dependent. To avoid this difficulty, a curvilinear system of coordinates is
used to transform the physical domain into rectangular region for the computational domain.

It is convenient to introduce a general curvilinear coordinate system as follows (John & Anderson, 1995):

x = x(ξ, η), z = z(ξ, η) or ξ = ξ(x, z), η = η(x, z) (9)

The moving boundaries are immobilized in the dimensionless (ξ, η) coordinate for all times. With the details omitted, the transfor-
mation of Eqs. (1), (2) and (5) can be written respectively as:
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= ρsLs
∂zmov
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(12)

where J = xξzη − xηzξ , α = x2
η + z2

η, β = xξxη + zξzη, γ = x2
ξ + z2

ξ , and xξ , xη, zξ and zη denote partial derivatives, J the Jacobian, β,
α, γ the geometric factors and η, ξ are the transformed coordinates.
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Table 1
Thermal property of the unfrozen layer and frozen layer

Properties Unfrozen layer Frozen layer

ρ (kg/m3) 1942.0 1910.0
a (m2/s) 0.210 × 10−6 0.605 × 10−6

λ (W/m K) 0.855 1.480
Cp (J/kg K) 2.099 × 103 1.281 × 103

4. Solution method

It is known that the inherent difficulties in the conventional numerical methods (pure parabolic grid generators) for freezing
problems suggest the use of combined transfinite interpolation and PDE methods is most instances. Although conventional numerical
methods can be used to obtain satisfactory results, problems of large time consumption and control functions that are often difficult
to determine, are involved. Therefore, the new method presented in this paper is generally applicable, and offers the highest overall
accuracies and smooth grid point distribution. In addition, the boundary point discontinuities are smoothed out in the interior domain
and orthogonality at boundaries can be maintained.

In this study, in order to initiate numerical simulation, a very thin layer of freeze with a constant thickness zmov(0) was assumed
to be present. This initial condition is obtained from the Stefan solution in the frozen layer and a linear temperature distribution in
the unfrozen layer. Tests revealed that the influence of zmov(0) could be neglected as zmov(0) was sufficiently small. The transient
heat equations (Eqs. (10) and (11)) and the Stefan condition (Eq. (12)) are solved by using finite difference method using parameter
values obtained from Table 1. A system of non-linear equations results whereby each equation for the internal nodes can be cast into
a numerical discretization:

Transient heat equation for unfrozen layer:

T n+1
l (k, i) =

(
1

1 + (2al�t/(J2(k, i))((α(k, i)/�ζ�ζ) + (γ(k, i)/�η�η)))

)

×
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(
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T n+1
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�ζ�ζ
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2�η
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Fig. 3. Strategy for calculation.

Fig. 4. Validation testes for a planar freezing front in a rectangular phase-change Slab.
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Fig. 5. Comparison of experimental data and simulated freezing front from present numerical study.

Fig. 6. Grid simulating the deformation of an interface (subjected to multiple constant temperature heat sources): freezing time of (a) 60 s, (b) 120 s, and (c) 180 s.

Transient heat equation for frozen layer:

T n+1
s (k, i) =

(
1

1 + (2as�t/(J2(k, i))((α(k, i)/�ζ�ζ) + (γ(k, i)/�η�η)))

)

×
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×
(
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�ζ�ζ

)
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(14)

Fig. 7. The simulations of temperature distribution (◦C) within rectangular phase change slab (subjected to multiple constant temperature heat sources): freezing
time of (a) 60 s, (b) 120 s, and (c) 180 s.
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Stefan condition:

Zn+1(k, i) = Zn(k, i) + �T

ρsLs
×
[(

λs
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2�η

))2
)]

(15)

The details of computational schemes and strategy for solving the combined transfinite interpolation functions (Eqs. (6)–(9)) and
PDE (Eqs. (13)–(15)) are illustrated in Fig. 3.

5. Experiment

The freezing experiments are performed in a rectangular test cell filled with a porous medium (porosity, φ = 0.38) with inside
dimensions of 10 cm in length (x), 5 cm in height (z) and 2.5 cm in depth (y). The partial horizontal top wall and bottom wall and

Fig. 8. Grid simulating the deformation of an interface (subjected to multiple heat sources with different temperature): freezing time of (a) 60 s, (b) 120 s, and (c)
180 s.
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the vertical front and back walls are made of acrylic resin. The entire test cell is covered with 8 cm thick Styrofoam on all sides
to minimize the effect of heat losses and condensation of moisture at the walls. The partial top wall, which serves as a constant
temperature heat source, is multi-pass heat exchanger. Heat exchanger is connected through a valve system to constant temperature
bath where the liquid nitrogen is used as the cooling medium. Thirty thermocouples with diameter of 0.15 mm are placed at interval
of 10 mm throughout the axis of a sample (x and z planes). These thermocouples are connected to data-logger and computer through
which the temperatures could be measured and stored at preselected time intervals. The positions of freezing front in the sample are
determined by interpolating the fusion temperature from the thermocouples reading.

The uncertainty in the results might come from the variations in humidity, room temperature and human error. The calculated
uncertainty associated with temperature is less than 2.75%. The calculated uncertainties in all tests are less than 2.85%.

6. Results and discussion

Numerical results are obtained for phase change in a rectangular cavity filled with a porous medium. The calculations are
performed under the following conditions:

(1) The time step of dt = 0.1 [s] is used for the computation of temperature field and location of freezing front.
(2) The number of nodes is N = 120 (width) × 100 (depth).
(3) Iterations are carried out until relative errors of 10−8 are reached.

In order to verify the accuracy of the present numerical algorithm, it is validated by performing simulations for a planar freezing
front in a water layer with a dimension of 10 cm (x) × 5 cm (z). Initially, the temperature of 0 ◦C is assigned throughout the layer.

Fig. 9. Grid simulating the deformation of an interface (subjected to multiple heat sources with different temperature): freezing time of (a) 60 s, (b) 120 s, and (c)
180 s.



P. Rattanadecho, S. Wongwises / Computers and Chemical Engineering 31 (2007) 318–333 329

Thereafter, one constant temperature heat source (TL = −40 ◦C) with strip length of 10 mm is imposed on the top wall. The calculated
front location is based on the thermal properties of ice and water. The results are then compared with analytical solution for the
freezing of water layer at the same condition. Fig. 4 clearly shows a good agreement between simulated and analytical solutions.
Therefore, the present method can yield accurate solutions.

Fig. 5 shows the measured and simulated results of the freezing front during freezing of water-saturated porous media in a
rectangular cavity with a dimension of 10 cm (x) × 5 cm (z) and initial temperature of 0 ◦C. In this comparison, one constant
temperature heat source, TL = −40 ◦C, is applied. The observation of the freezing front depicted from the figure reveals that the
simulated results and experimental results are qualitatively consistent. However, the experimental data is significantly lower than
that simulated results. Discrepancy may be attributed to heat loss and non-uniform heating effect along the surface of supplied load.
Numerically, the discrepancy may be attributed to uncertainties in the thermal and physical properties data. In addition, the source
of the discrepancy may be attributed to natural convection effect in liquid.

6.1. Freezing process with multiple constant temperature heat sources

The purpose of this subsection is to illustrate the efficiency of the grid generation system during the freezing of water-saturated
porous media in a rectangular cavity with a dimension of 12 cm (x) × 5 cm (z) (porosity, φ = 0.38) subjected to multiple constant
temperature heat sources (three heat sources with strip length of 10 mm in each region). Fig. 6(a) through (c) show grids that fit curves
that are typical of shapes seen during deformation of an interface with respect to elapsed times. The grid generation corresponds to
the initial temperature of 0 ◦C and applied boundary condition (TL = −40 ◦C) given by Eq. (3). It can be seen how freezing fronts
progress with respect to elapsed times. During the initial stages of freezing the shape of the interface in each region becomes a small
semi-circular shape as the freezing front moves further away from the fixed boundaries indicating principally two-dimensional heat
flow. As later times, the curve on the interface gradually flattens indicating the two-dimensional effect. In all figures, it is found that
the grid is able to maintain a significant amount of orthogonality and smoothness both within the interior and along the boundary

Fig. 10. The simulations of temperature distribution (◦C) (subjected to multiple heat sources with different temperature): freezing time of (a) 60 s, (b) 120 s, and (c)
180 s.
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as the grid points redistribute themselves to follow the interface. These results show the efficiency of the present method for the
moving boundary problem.

The simulations of temperature distribution within rectangular cavity filled with porous media in the vertical plane (x–z) corre-
sponding to grid simulating the deformation of an interface (Fig. 6(a)–(c)), are shown in Fig. 7(a)–(c). Since the present work is to
couple the grid generation algorithm with the transport equations, the thermal analysis during freezing process will be discussed
as follows. When multiple constant temperature heat sources are applied during localized freezing process, heat is conducted from
the hotter region in unfrozen layer to the cooler region in frozen layer. At the initial stages of freezing, the freezing fronts exhibit
to be a small semi-circular shape indicating principally two-dimensional heat conduction as shown in Fig. 7(a). Later, the shape of
interface becomes larger semi-circular shape as the freezing front moves further away from the fixed boundary as shown in Fig. 7(b)
and (c). However, as the freezing process persists, the freezing rate progresses slowly. This is because most of heat conduction takes
place the leading edge of frozen layer (freeze layer), which is located further from unfrozen layer. Consequently, small amount of
heat can conduct to the frozen layer due to the freeze region acting as an insulator and causing a freezing front to slowly move
with respect to elapsed times. Considering the shapes of the freezing front with respect to elapsed times, each freezing region
of the rectangular cavity shows signs of freezing, while the outer edge displays no obvious sign of freezing indicating that the
temperature does not fall below 0 ◦C. Nevertheless, at the long stages of freezing, the leading edge of applied boundary condition
displays sign of freezing continuously and the spreading of the freeze in the both x–z directions (semi-circular shape) is clearly
shown.

6.2. Freezing process with multiple heat sources with different temperature

The following discussion refers to case that the freezing of water-saturated porous media in a rectangular cavity with a dimension
of 12 cm (x) × 5 cm (z) (porosity, φ = 0.38) subjected to multiple heat sources with different temperature. The grid generation for
the applied boundary condition with different temperature in two cases, namely, TL,l = −80 ◦C, TL,c = −40 ◦C, TL,r = −80 ◦C and

Fig. 11. The simulations of temperature distribution (◦C) (subjected to multiple heat sources with different temperature): freezing time of (a) 60 s, (b) 120 s, and (c)
180 s.
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TL,l = −40 ◦C, TL,c = −60 ◦C, TL,r = −80 ◦C, are shown in Figs. 8(a)–(c) and 9(a)–(c), respectively. The simulations of temperature
distribution corresponding these grid generations (Figs. 8 and 9), are also shown in Figs. 10(a)–(c) and 11(a)–(c), respectively. As
similarly mentioned in previous subsection, the simulated results show the reasonable trends of freezing phenomena at specified
freezing conditions.

This study shows the capability of the present method to correctly handle the phase change problem with highly complex moving
boundaries condition. With further quantitative validation of the present method, this method can be used as a tool for investigating
in detail this particular freezing of phase change slab at a fundamental level.

7. Conclusions

Mesh quality has the largest impact on solution quality. A high quality mesh increases the accuracy of the computational flow
solution and improves convergence. Therefore, it is important to provide tools for obtaining and improving a mesh.

In this study, the freezing of water-saturated porous media in a rectangular cavity subjected to multiple heat sources with
different temperature has been investigated numerically. A generalized mathematical model and an effective calculation procedure is
proposed. A preliminary case study indicates the successful implementation of the numerical procedure. A two-dimensional freezing
model is then validated against available analytical solutions and experimental results and subsequently used as a tool for efficient
computational prototyping. Simulated results are in good agreement with available analytical solution and experimental results. The
successful comparison with analytical solution and experiments should give confidence in the proposed mathematical treatment,
and encourage the acceptance of this method as useful tool for exploring practical problems.

The next phase, which has already begun, is to couple the grid generation algorithm with the completing transport equations that
determine the moving boundary front and buoyancy-driven convection in the unfrozen layer (liquid). Moreover, some experimental
studies will be performed to validate numerical results.
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Appendix A

In this section, we will derive a transformation model of the governing differential equations for using in the numerical calculation.
The details are shown as below:

A.1. General transformation of the first and second derivatives

Considering the first derivative of any parameters can be written as:

∂
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= 1

J
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zη
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(A.1)

where J is Jacobian, it can be written as:

J = xξzη − xηzξ (A.2)

xξ = ∂x

∂ξ
(A.3)

Considering the second derivative of any parameters, we will establish the second derivative of Laplace equation of parameter A
where Eqs. (A.1)–(A.3) are related:
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xξ , xξ , zξ and zη denote partial derivatives, β, α, γ are the geometric factors and η, ξ are the transformed coordinates. The related
parameter can be defined as:

x = x(ξ, η), z = z(ξ, η) or ξ = ξ(x, z), η = η(x, z)

arrow

x = x(ξ), z = z(ξ, η) or ξ = ξ(x), η = η(x, z)

∴ xη = ∂x

∂η
= 0 or ξx = ∂ξ

∂x
= 0

(A.6)

Corresponding to the Eq. (A.6), the first derivative of any parameters (Eq. (A.1)) can be rewritten as:
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where

J = xξzη − xηzξ

arrow

J = xξzη

(A.8)

The second derivative of any parameters (Eqs. (A.4)–(A.6)) can be also rewritten as:

∇2A = 1

J2

(
α

∂2A

∂ξ2 − 2β
∂2A

∂ξ∂η
+ γ

∂2A

∂η2

)

+ 1

J3

[
(αxξξ − 2βxξη + γxηη)

(
zξ

∂A

∂η
− zη

∂A

∂ξ

)
+ (αzξξ − 2βzξη + γzηη)

(
xη

∂A

∂ξ
− xξ

∂A

∂η

)]
arrow

∇2A = 1

J2

(
α

∂2A

∂ξ2 − 2β
∂2A

∂ξ∂η
+ γ

∂2A

∂η2

)
+ 1

J3

[
(αxξξ)

(
zξ

∂A

∂η
− zη

∂A

∂ξ

)
+ (αzξξ − 2βzξη + γzηη)

(
−xξ

∂A

∂η

)]
(A.9)
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A.2. The transformation of thermal model

After some mathematical manipulations (Eq. (A.7), (A.9), (1), (2) and (5)), a transformation model of the governing differential
equations become:
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